P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265

TEL: 888-670-8729 (USA \& Canada) or +1-613-686-6675 (Intl) FAX: 800-561-1970 (USA \& Canada) or +1-613-686-6679 (Intl)
info@avtechpulse.com - http://www.avtechpulse.com/

X BOX 5120, LCD MERIVALE OTTAWA, ONTARIO CANADA K2C 3H5

INSTRUCTIONS

MODEL AVH-HV1-C
100 V, 100 kHz
IMPULSE GENERATOR

WITH 0.8 OR 1 ns PULSE WIDTH
\qquad

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

TECHNICAL SUPPORT

Phone: 888-670-8729 (USA \& Canada) or +1-613-686-6675 (International)
Fax: 800-561-1970 (USA \& Canada) or +1-613-686-6679 (International)
E-mail: info@avtechpulse.com
World Wide Web: http://www.avtechpulse.com

TABLE OF CONTENTS

WARRANTY. 2
TECHNICAL SUPPORT. 2
TABLE OF CONTENTS 3
INTRODUCTION. 5
AVAILABLE OPTIONS 5
SPECIFICATIONS 6
REGULATORY NOTES 7
FCC PART 18 7
EC DECLARATION OF CONFORMITY. 7
DIRECTIVE 2002/95/EC (RoHS) 8
DIRECTIVE 2002/96/EC (WEEE) 8
AC POWER SUPPLY REGULATORY NOTES 9
INSTALLATION 10
VISUAL CHECK 10
POWER RATINGS. 10
CONNECTION TO THE POWER SUPPLY 10
PROTECTION FROM ELECTRIC SHOCK 11
ENVIRONMENTAL CONDITIONS 12
FUSES 13
AC FUSE REPLACEMENT 13
DC FUSE REPLACEMENT 14
FUSE RATINGS 14
FRONT PANEL CONTROLS. 15
REAR PANEL CONTROLS. 17
GENERAL INFORMATION. 18
BASIC TEST ARRANGEMENT 18
BASIC PULSE CONTROL 18
AMPLITUDE INTERACTION 19
OPERATION AT LOW AMPLITUDES 19
OSCILLOSCOPE SELECTION AND BANDWIDTH ISSUES 19
MINIMIZING WAVEFORM DISTORTIONS 21
USE 50Ω TRANSMISSION LINES AND LOADS 21
USE LOW-INDUCTANCE LOADS 21
PREVENTING DAMAGE 21
MECHANICAL INFORMATION 22
TOP COVER REMOVAL 22
RACK MOUNTING 22
ELECTROMAGNETIC INTERFERENCE 22
MAINTENANCE 23
REGULAR MAINTENANCE 23
CLEANING 23
WIRING DIAGRAMS 24
WIRING OF AC POWER 24
PCB 158Q - LOW VOLTAGE POWER SUPPLY, 1/3 25
PCB 158Q - LOW VOLTAGE POWER SUPPLY, 2/3 26
PCB 158Q - LOW VOLTAGE POWER SUPPLY, 3/3 27
PCB 235B - HIGH VOLTAGE DC POWER SUPPLY 28
PCB 126C - OSCILLATOR AND TRIGGER CIRCUIT. 29
MAIN WIRING - POSITIVE UNITS. 30
PERFORMANCE CHECK SHEET. 31

INTRODUCTION

The AVH-HV1-C is a high performance instrument capable of generating up to 100 Volts into 50Ω loads at repetition rates up to 100 kHz . The output pulse width is 1 ns or less (800 ps or less for units with the -T1 option), measured at the 20% rise time point (the FWHM pulse width is less).

Instruments with the "-P" model suffix can generate up to +100 V , whereas instruments with the "-N" model suffix can generate up to -100V. Instruments with the "-PN" suffix can generate both polarities.

The output is designed to drive 50Ω loads. (A 50Ω load is required for proper operation.) The output is AC-coupled.

This instrument is intended for use in research, development, test and calibration laboratories by qualified personnel.

AVAILABLE OPTIONS

The AVH-HV1-C is available with a variety of options, including:
-AK2 Option: Consists of one SMA 12 GHz 20 Watt attenuator (20 dB) and two SMA 18 GHz 2 Watt attenuators ($10 \& 20 \mathrm{~dB}$) for use on the output, and two $50 \mathrm{Ohm}, 1 \mathrm{GHz}, 1$ Watt feed-through terminators (one SMA, one BNC) for use on external trigger inputs.
-AK8 Option: Suggested for models with an SMA output connector. Consists of one 12-inch SMA-M/SMA-M PE-SR405FL coaxial cable, one 12-inch SMA-M/SMA-M RG-316 coaxial cable, one 36-inch SMA-M/SMA-M RG-316 coaxial cable, one 24 -inch SMA-M/BNC-M RG-316 coaxial cable, one 36-inch BNC-M/BNC-M RG58C/U coaxial cable, one SMA-F to BNC-M adapter, one SMA-M to BNC-F adapter, one SMA-F to SMA-F adapter, and one SMA-F to solder cup adapter.
-OS Option: An externally generated DC offset can be added to the output.
-T1 Option: The pulse width is $<0.8 \mathrm{~ns}$ instead of $<1 \mathrm{~ns}$.

SPECIFICATIONS

Model:	AVH-HV1-C ${ }^{1}$
Amplitude ${ }^{3,9}$: (50 1 load)	10 to 100 V
Pulse width, measured at 20% rise time ${ }^{11}$:	$\leq 1.0 \mathrm{~ns}$ standard, ≤ 0.8 ns optional 4
PRF:	0 to 100 kHz
Polarity ${ }^{5}$:	Positive, negative, or dual-polarity (specify)
Propagation delay:	$\leq 200 \mathrm{~ns}$ (Ext trig in to pulse out)
Required load impedance:	50 Ohms ${ }^{10}$
Jitter:	$\pm 15 \mathrm{ps}$ (Ext trig in to pulse out)
Two channel option:	Optional ${ }^{8}$
Double pulse option:	Optional ${ }^{9}$
DC offset option ${ }^{6}$:	Apply required DC offset to back-panel solder terminals (± 50 Volts, 250 mA max)
Trigger modes:	Internal trigger, or external trigger (TTL level pulse, > $50 \mathrm{~ns}, 1 \mathrm{k} \Omega$ input impedance).
Variable delay:	0 to 200 ns , for internal trigger mode only. No variable delay in external trigger mode.
Sync output:	>+3 Volts, > 50 ns , will drive 50 Ohm loads
Connectors:	Out: SMA, Trig/Sync: BNC
Power requirements:	100-240 Volts, $50-60 \mathrm{~Hz}$
Dimensions ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$):	$100 \mathrm{~mm} \times 430 \mathrm{~mm} \times 375 \mathrm{~mm}$ (3.9" $\times 17^{\prime \prime} \times 14.8$ ")
Optional rack-mount kit:	Available on -B and -C units. Add the suffix "-R5" to the model number to include 19" rack mount kit. The width of all -R5 units is $430 \mathrm{~mm} / 17$ ".
Operating temperature:	$+5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

1) - C suffix indicates stand-alone lab instrument with internal clock and line powering. No suffix indicates miniature module requiring DC power and external trigger. (See http://www.avtechpulse.com/formats for the basic instrument formats).
2) -B suffix indicates IEEE-488.2 GPIB and RS-232 control of amplitude, PRF, delay and polarity. (See http://www.avtechpulse.com/gpib).
3) For operation of variable-amplitude units at amplitudes of less than 20% of full-scale, best results will be obtained by setting the amplitude near full-scale and using external attenuators on the output.
4) For 800 ps pulse width option, add suffix -T1.
5) Indicate desired polarity by suffixing model number with -P or -N (i.e. positive or negative) or -PN for dual polarity option. Polarity reversal achieved by means of a two-position switch that controls the polarity of the signal output port on -C units and via keypad control on -B units. -PN option not available on modules.
6) For DC offset option suffix the model number with -OS. Avtech Model AVX-T bias tee can also be used to obtain DC offset.
7) Add the suffix -VXI to the model number to specify the Ethernet port..
8) For the two channel option, add the suffix -2CHPP for two positive outputs, the suffix -2CHNN for two negative outputs, or the suffix -2CHPN for the one positive output and one negative output.
9) For the double pulse option add the suffix -DPP for a unipolar output, and add the suffix -DPN for a bipolar output. Note that the maximum amplitude is reduced to 70% for DP option units.
10) A 50 Ohm load is required. Other loads may damage the instrument. Consult Avtech (info@avtechpulse.com) if you need to drive other load impedances.
11) The FWHM pulse width, measured at 50% rise, will be lower.

REGULATORY NOTES

FCC PART 18

This device complies with part 18 of the FCC rules for non-consumer industrial, scientific and medical (ISM) equipment.

This instrument is enclosed in a rugged metal chassis and uses a filtered power entry module (where applicable). The main output signal is provided on a shielded connector that is intended to be used with shielded coaxial cabling and a shielded load. Under these conditions, the interference potential of this instrument is low.

If interference is observed, check that appropriate well-shielded cabling is used on the output connectors. Contact Avtech (info@avtechpulse.com) for advice if you are unsure of the most appropriate cabling. Also, check that your load is adequately shielded. It may be necessary to enclose the load in a metal enclosure.

If any of the connectors on the instrument are unused, they should be covered with shielded metal "dust caps" to reduce the interference potential.

This instrument does not normally require regular maintenance to minimize interference potential. However, if loose hardware or connectors are noted, they should be tightened. Contact Avtech (info@avtechpulse.com) if you require assistance.

EC DECLARATION OF CONFORMITY

We Avtech Electrosystems Ltd.
P.O. Box 5120, LCD Merivale

Ottawa, Ontario
Canada K2C 3H5
declare that this pulse generator meets the intent of Directive 2004/108/EG for Electromagnetic Compatibility. Compliance pertains to the following specifications as listed in the official Journal of the European Communities:

EN 50081-1 Emission
EN 50082-1 Immunity
and that this pulse generator meets the intent of the Low Voltage Directive 72/23/EEC as amended by 93/68/EEC. Compliance pertains to the following specifications as listed in the official Journal of the European Communities:

$$
\begin{array}{ll}
\text { EN 61010-1:2001 } & \begin{array}{l}
\text { Safety requirements for electrical equipment for } \\
\text { measurement, control, and laboratory use }
\end{array}
\end{array}
$$

DIRECTIVE 2002/95/EC (RoHS)

This instrument is exempt from Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the Restriction of the use of certain Hazardous Substances (RoHS) in electrical and electronic equipment. Specifically, Avtech instruments are considered "Monitoring and control instruments" (Category 9) as defined in Annex 1A of Directive 2002/96/EC. The Directive 2002/95/EC only applies to Directive 2002/96/EC categories 1-7 and 10, as stated in the "Article 2 - Scope" section of Directive 2002/95/EC.

DIRECTIVE 2002/96/EC (WEEE)

European customers who have purchased this equipment directly from Avtech will have completed a "WEEE Responsibility Agreement" form, accepting responsibility for WEEE compliance (as mandated in Directive 2002/96/EC of the European Union and local laws) on behalf of the customer, as provided for under Article 9 of Directive 2002/96/EC.

Customers who have purchased Avtech equipment through local representatives should consult with the representative to determine who has responsibility for WEEE compliance. Normally, such responsibilities with lie with the representative, unless other arrangements (under Article 9) have been made.

Requirements for WEEE compliance may include registration of products with local governments, reporting of recycling activities to local governments, and financing of recycling activities.

AC POWER SUPPLY REGULATORY NOTES

This instrument converts the AC input power to the +24 V DC voltage that powers the internal circuitry of this instrument using a Tamura AAD130SD-60-A switching power supply. According to the manufacturer, the Tamura AAD130SD-60-A has the following certifications:

UL60950-1
IEC60950-1
CSA C22.2 No. 60950-1
EN60950-1
and is compliant with:
EN61000-3-2
EN61000-4-2 Level 2
EN61000-4-2 Level 3 (Air Only)
EN61000-4-4 Level 3
EN61000-4-5 Level 3
EN61000-4-11
CISPR 11 and 22 FCC Part 15 Class B (conducted)

INSTALLATION

VISUAL CHECK

After unpacking the instrument mainframe and the transformer module, examine to ensure that they have not been damaged in shipment. Visually inspect all connectors, knobs, and handles. Confirm that a power cord and an instrumentation manual (this manual), are with the instrument. If the instrument has been damaged, file a claim immediately with the company that transported the instrument.

POWER RATINGS

This instrument is intended to operate from $100-240 \mathrm{~V}, 50-60 \mathrm{~Hz}$.
The maximum power consumption is 57 Watts. Please see the "FUSES" section for information about the appropriate AC and DC fuses.

This instrument is an "Installation Category ll" instrument, intended for operation from a normal single-phase supply.

CONNECTION TO THE POWER SUPPLY

An IEC-320 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket. The other end of the detachable power cord plugs into the local mains supply. Use only the cable supplied with the instrument. The mains supply must be earthed, and the cord used to connect the instrument to the mains supply must provide an earth connection. (The supplied cord does this.)

Warning: Failure to use a grounded outlet may result in injury or death due to electric shock. This product uses a power cord with a ground connection. It must be connected to a properly grounded outlet. The instrument chassis is connected to the ground wire in the power cord.

The table below describes the power cord that is normally supplied with this instrument, depending on the destination region:

Destination Region	Description	Option	Manufacturer	Part Number
United Kingdom, Hong Kong, Singapore, Malaysia	$\begin{gathered} \mathrm{BS} 1363, \\ 230 \mathrm{~V}, 50 \mathrm{~Hz} \end{gathered}$	-AC00	Qualtek	370001-E01
Australia, New Zealand	$\begin{gathered} \text { AS 3112:2000, } \\ 230-240 \mathrm{~V}, 50 \mathrm{~Hz} \end{gathered}$	-AC01	Qualtek	374003-A01
Continental Europe, Korea, Indonesia, Russia	European CEE 7/7 "Schuko" 230V, 50 Hz	-AC02	Qualtek	364002-D01
North America, Taiwan	NEMA 5-15, $120 \mathrm{~V}, 60 \mathrm{~Hz}$	-AC03	Qualtek	312007-01
Switzerland	$\begin{gathered} \text { SEV } 1011, \\ 230 \mathrm{~V}, 50 \mathrm{~Hz} \end{gathered}$	-AC06	Qualtek	378001-E01
South Africa, India	SABS 164-1, $220-250 \mathrm{~V}, 50 \mathrm{~Hz}$	-AC17	Volex	2131H 10 C3
Japan	$\begin{gathered} \text { JIS } 8303, \\ 100 \mathrm{~V}, 50-60 \mathrm{~Hz} \end{gathered}$	-AC18	Qualtek	397002-01
Israel	$\begin{gathered} \mathrm{SI} 32, \\ 220 \mathrm{~V}, 50 \mathrm{~Hz} \end{gathered}$	-AC19	Qualtek	398001-01
China	$\begin{aligned} & \text { GB 1002-1, } \\ & 220 \mathrm{~V}, 50 \mathrm{~Hz} \end{aligned}$	-AC22	Volex	2137H 10 C3

PROTECTION FROM ELECTRIC SHOCK

Operators of this instrument must be protected from electric shock at all times. The owner must ensure that operators are prevented access and/or are insulated from every connection point. In some cases, connections must be exposed to potential human contact. Operators must be trained to protect themselves from the risk of electric shock. This instrument is intended for use by qualified personnel who recognize shock hazards and are familiar with safety precautions required to avoid possibly injury. In particular, operators should:

1. Keep exposed high-voltage wiring to an absolute minimum.
2. Wherever possible, use shielded connectors and cabling.
3. Connect and disconnect loads and cables only when the instrument is turned off.
4. Keep in mind that all cables, connectors, oscilloscope probes, and loads must have an appropriate voltage rating.
5. Do not attempt any repairs on the instrument, beyond the fuse replacement procedures described in this manual. Contact Avtech technical support (see page 2 for contact information) if the instrument requires servicing. Service is to be performed solely by qualified service personnel.

ENVIRONMENTAL CONDITIONS

This instrument is intended for use under the following conditions:

1. indoor use;
2. altitude up to 2000 m ;
3. temperature $5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$;
4. maximum relative humidity 80% for temperatures up to $31^{\circ} \mathrm{C}$ decreasing linearly to 50% relative humidity at $40^{\circ} \mathrm{C}$;
5. Mains supply voltage fluctuations up to $\pm 10 \%$ of the nominal voltage;
6. no pollution or only dry, non-conductive pollution.

FUSES

This instrument contains four fuses. All are accessible from the rear-panel. Two protect the AC prime power input, and two protect the internal DC power supplies. The locations of the fuses on the rear panel are shown in the figure below:

AC FUSE REPLACEMENT

To physically access the AC fuses, the power cord must be detached from the rear panel of the instrument. The fuse drawer may then be extracted using a small flat-head screwdriver, as shown below:

DC FUSE REPLACEMENT

The DC fuses may be replaced by inserting the tip of a flat-head screwdriver into the fuse holder slot, and rotating the slot counter-clockwise. The fuse and its carrier will then pop out.

FUSE RATINGS

The following table lists the required fuses:

Fuses	Nominal Mains Voltage	Rating	Case Size	Recommended Replacement Part Littelfuse Part Number	
Digi-Key Stock Number					
\#1, \#2 (AC)	$100-240 \mathrm{~V}$	0.5A, 250V, Time-Delay	$5 \times 20 \mathrm{~mm}$	0218.500 HXP	F2416-ND
\#3 (DC)	N/A	0.5A, 250V, Time-Delay	$5 \times 20 \mathrm{~mm}$	0218.500 HXP	F2416-ND
\#4 (DC)	N/A	0.5A, 250V, Time-Delay	$5 \times 20 \mathrm{~mm}$	0218.500 HXP	F2416-ND

The recommended fuse manufacturer is Littelfuse (http://www.littelfuse.com).
Replacement fuses may be easily obtained from Digi-Key (http://www.digikey.com) and other distributors.

FRONT PANEL CONTROLS

1) POWER Switch. This is the main power switch. When turning the instrument on, there may be a delay of several seconds before the instrument appears to respond.
2) OVERLOAD Indicator. When the instrument is powered, this indicator is normally green, indicating normal operation. If this indicator is yellow, an internal automatic overload protection circuit has been tripped. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a very low impedance), the protective circuit will disable the output of the instrument and turn the indicator light yellow. The light will stay yellow (i.e. output disabled) for about 5 seconds after which the instrument will attempt to re-enable the output (i.e. light green) for about 1 second. If the overload condition persists, the output will be disabled again (i.e. light yellow) for another 5 seconds. If the overload condition has been removed, the instrument will resume normal operation.

This overload indicator may flash yellow briefly at start-up. This is not a cause for concern.
3) PRF Range Switch. This switch sets the pulse repetition frequency (PRF) range of the internal oscillator. The marked value of each position is the upper limit of the 10:1 range, approximately. The vernier dial directly below the switch varies the PRF within the set range.

If this switched is set to the "EXT" position, the instrument is triggered by a signal applied to the TRIG connector, rather than by the internal oscillator.
4) TRIG Connector. When the PRF Range Switch is set to "EXT", the instrument is triggered by a TTL pulse applied to this connector. The pulse must be at least 50 ns wide.

When the PRF Range Switch is set to one of the four internal oscillator ranges, this connector is an output, which supplies a $3 \mathrm{~V},>50 \mathrm{~ns}$ wide pulse for each trigger
event. This output may be used to trigger oscilloscopes or other equipment.
5) Delay Controls. When the PRF Range Switch is set to one of the four internal oscillator ranges, the main output is advanced or delayed relative to the TRIG output pulse (item 3). The delay is variable up to 200 ns , approximately, using the DELAY and DELAY FINE dials.
6) Amplitude Control. This dial controls the amplitude.
7) Polarity Switch. (Present on -PN units only.) This switch controls the output polarity (positive or negative).
8) OUT Connector. This SMA connector provides the main output. This output requires a 50Ω load to function properly.

REAR PANEL CONTROLS

1. AC POWER INPUT. An IEC-320 C14 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket.
2. AC FUSE DRAWER. The two fuses that protect the AC input are located in this drawer. Please see the "FUSES" section of this manual for more information.
3. DC FUSES. These two fuses protect the internal DC power supplies. Please see the "FUSES" sections of this manual for more information.
4. OS INPUT CONNECTOR. (Present on units with -OS option only.) A DC offset in the range of $\pm 50 \mathrm{~V}$ (250 mA max) may be applied to this solder terminal. The DC offset will appear on the output. When this feature is not used, the OS input should be connected to ground (using the adjacent GND connector). This is especially important when driving loads containing a diode.
5. GND CONNECTOR. (Present on units with -OS option only.) This solder terminal is connected to ground. It may be used to ground the OS input connector.

GENERAL INFORMATION

BASIC TEST ARRANGEMENT

The AVH-HV1-C should be tested with a sampling oscilloscope with a bandwidth of at least 12 GHz to properly observe the high-speed waveform. A typical test arrangement is shown below:

The attenuators are required to prevent damage to the sampling oscilloscope. A 40 dB attenuator with sufficient bandwidth should be used on the main output.

BASIC PULSE CONTROL

This instrument can be triggered by its own internal clock or by an external TTL trigger signal. When triggered internally, two mainframe output channels respond to the trigger: OUT and SYNC.

- OUT. This is the main output.
- SYNC. The SYNC pulse is a $3 V$, >50 ns reference pulse used to trigger oscilloscopes or other measurement systems.

These pulses are illustrated below:

Figure A

The AVH-HV1-C can also be triggered by a TTL-level pulse applied to the TRIG input.

AMPLITUDE INTERACTION

Some properties of the output pulse may change as a function of the amplitude setting. For some demanding applications, it may be desirable to use a combination of external attenuators and the amplitude pot to achieve the desired output amplitude.

OPERATION AT LOW AMPLITUDES

This instrument will generate the best waveforms when operated near maximum amplitude. If amplitudes less than $1 / 3$ of the full-scale value are desired, better results will be obtained if the pulse generator is operated at a higher amplitude, and an attenuator is connected to the output.

For attenuator input voltages exceeding 50 Volts, Avtech suggest the Midwest Microwave ATT-0527-XX-SMA-07 family of fixed $12 \mathrm{GHz}, 20$ Watt attenuators. A 20 dB attenuator of this type is included with the -AK2 option.

At lower voltages, Avtech recommends the BW-SxxW2+ series of 18 GHz coaxial attenuators from Mini-Circuits, http://www.minicircuits.com/. (The "xx" in the part number is replaced with the numeric attenuation value in dB). 10 and 20 dB attenuators of this type are included with the -AK2 option.

OSCILLOSCOPE SELECTION AND BANDWIDTH ISSUES

To observe a signal with a rise time of t_{R}, the bandwidth of the oscilloscope must exceed $1 / \mathrm{t}_{\mathrm{R}}$. For the AVH-HV1-C-T1 typical rise times ($20 \%-80 \%$) may be as fast as $\sim 180 \mathrm{ps}$, so $1 / \mathrm{t}_{\mathrm{R}}=1 / 180 \mathrm{ps}=6 \mathrm{GHz}$. For best results, the bandwidth of the oscilloscope (and any attenuators and cables used in the measurement system) should exceed 12 GHz .

Most oscilloscopes with suitable bandwidth are "sampling" oscilloscopes, which are more specialized in nature than slower conventional "real-time" oscilloscopes. Most sampling oscilloscopes have a very limited input voltage range ($\pm 1 \mathrm{~V}$, for example). It is essential in these cases to use high-bandwidth attenuators on the input of the oscilloscope, to avoid over-driving or damaging the oscilloscope.

If a high-bandwidth sampling oscilloscope is not available, a slower real-time oscilloscope can be used, but the rising and falling edges will not be accurately displayed. Significant overshoot and ringing will be observed as a result of the oscilloscope's limited bandwidth. (Contrary to some user's expectations, low-bandwidth oscilloscopes do not "round off" the signal like a classic low-pass filter.) These are measurement artifacts, and are not normally present on the actual output.

MINIMIZING WAVEFORM DISTORTIONS

USE 50Ω TRANSMISSION LINES AND LOADS

Connect the load to the pulse generator with 50Ω transmission lines (e.g. RG-58 or RG174 cable).

This instrument requires a 50Ω load for proper operation. It will not properly drive a high-impedance load. The output stage will be damaged if it is operated into an open circuit (or any other high impedance). Failures due to improper output loading are not covered by the warranty.

USE LOW-INDUCTANCE LOADS

Lenz's Law predicts that for an inductive voltage spike will be generated when the current through an inductance changes. Specifically, $\mathrm{V}_{\text {SPIKE }}=\mathrm{L} \times \mathrm{dl}_{\text {LOAD }} / \mathrm{dt}$, where L is the inductance, I load is the load current change, and t is time. For this reason, it is important to keep any parasitic in the load low. This means keeping wiring short, and using low inductance components. In particular, wire-wound resistors should be avoided.

PREVENTING DAMAGE

The AVH-HV1-C may fail if triggered at a PRF greater than 100 kHz .
This unit is designed to operate into a load impedance of 50 Ohms and the output stage will be damaged if it is operated into an open circuit (or any other high impedance). Failures due to improper output loading are not covered by the warranty.

The lifetime of the switching elements in the pulse generator module is proportional to the running time of the instrument. For this reason the prime power to the instrument should be turned off when the instrument is not in use.

MECHANICAL INFORMATION

TOP COVER REMOVAL

If necessary, the interior of the instrument may be accessed by removing the four Phillips screws on the top panel. With the four screws removed, the top cover may be slid back (and off).

Always disconnect the power cord and allow the instrument to sit unpowered for 10 minutes before opening the instrument. This will allow any internal stored charge to discharge.

There are no user-adjustable internal circuits. For repairs other than fuse replacement, please contact Avtech (info@avtechpulse.com) to arrange for the instrument to be returned to the factory for repair. Service is to be performed solely by qualified service personnel.

食 Caution: High voltages are present inside the instrument during normal operation. Do not operate the instrument with the cover removed.

RACK MOUNTING

A rack mounting kit is available. The -R5 rack mount kit may be installed after first removing the one Phillips screw on the side panel adjacent to the front handle.

ELECTROMAGNETIC INTERFERENCE

To prevent electromagnetic interference with other equipment, all used outputs should be connected to shielded loads using shielded coaxial cables. Unused outputs should be terminated with shielded coaxial terminators or with shielded coaxial dust caps, to prevent unintentional electromagnetic radiation. All cords and cables should be less than $3 m$ in length.

MAINTENANCE

REGULAR MAINTENANCE

This instrument does not require any regular maintenance.
On occasion, one or more of the four rear-panel fuses may require replacement. All fuses can be accessed from the rear panel. See the "FUSES" section for details.

CLEANING

If desired, the interior of the instrument may be cleaned using compressed air to dislodge any accumulated dust. (See the "TOP COVER REMOVAL" section for instructions on accessing the interior.) No other cleaning is recommended.

WIRING OF AC POWER

PCB 158Q - LOW VOLTAGE POWER SUPPLY, 1/3

PCB 158Q - LOW VOLTAGE POWER SUPPLY, $2 / 3$

PCB 158Q - LOW VOLTAGE POWER SUPPLY, 3/3

PCB 235B - HIGH VOLTAGE DC POWER SUPPLY

MAIN WIRING - POSITIVE UNITS

PERFORMANCE CHECK SHEET

