

AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS SINCE 1975

P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265

TEL: 888-670-8729 (USA & Canada) or +1-613-686-6675 (Intl) FAX: 800-561-1970 (USA & Canada) or +1-613-686-6679 (Intl)

X BOX 5120, LCD MERIVALE OTTAWA, ONTARIO CANADA K2C 3H5

info@avtechpulse.com - http://www.avtechpulse.com/

INSTRUCTIONS

MODEL AVM-1-C

5 VOLT, 25 MHz

HIGH SPEED PULSE GENERATOR

WITH 100 ps RISE TIME

SERIAL NUMBER: _____

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

TECHNICAL SUPPORT

Phone: 888-670-8729 (USA & Canada) or +1-613-686-6675 (Intl) Fax: 800-561-1970 (USA & Canada) or +1-613-686-6679 (Intl)

> E-mail: info@avtechpulse.com World Wide Web: <u>http://www.avtechpulse.com</u>

WARRANTY	2
TECHNICAL SUPPORT	2
TABLE OF CONTENTS	3
INTRODUCTION	5
AVAILABLE OPTIONS	6
SPECIFICATIONS	7
REGULATORY NOTES	8
FCC PART 18	8
EC DECLARATION OF CONFORMITY	8
DIRECTIVE 2002/95/EC (RoHS)	9
DIRECTIVE 2002/96/EC (WEEE)	9
AC POWER SUPPLY REGULATORY NOTES	10
INSTALLATION	11
VISUAL CHECK	11
POWER RATINGS	11
CONNECTION TO THE POWER SUPPLY	11
PROTECTION FROM ELECTRIC SHOCK	12
ENVIRONMENTAL CONDITIONS	
FUSES	14
AC FUSE REPLACEMENT	14
DC FUSE REPLACEMENT	15
FUSE RATINGS	15
FRONT PANEL CONTROLS	16
REAR PANEL CONTROLS	
GENERAL INFORMATION	20
BASIC TEST ARRANGEMENT	20
GENERAL OPERATING NOTES	20
AMPLITUDE INTERACTION	20
POLARITY INVERSION	20
OPERATION AT LOW AMPLITUDES	21
OSCILLOSCOPE SELECTION AND BANDWIDTH ISSUES	21
MINIMIZING WAVEFORM DISTORTIONS	22
USE 50 OHM TRANSMISSION LINES AND LOADS	22

TABLE OF CONTENTS

USE LOW-INDUCTANCE LOADS	22
PREVENTING DAMAGE	22
MECHANICAL INFORMATION	23
TOP COVER REMOVAL	23
ELECTROMAGNETIC INTERFERENCE	23
MAINTENANCE	23
REGULAR MAINTENANCE	23
CLEANING	23
WIRING DIAGRAMS	24
WIRING OF AC POWER	24
PCB 158P - LOW VOLTAGE POWER SUPPLY, 1/3	25
PCB 158P - LOW VOLTAGE POWER SUPPLY, 2/3	26
PCB 158P - LOW VOLTAGE POWER SUPPLY, 3/3	27
PCB 219E - INTERNAL OSCILLATOR AND EXTERNAL TRIGGER CIRCUIT	28
PCB 231A - INTERNAL DC OFFSET FUNCTION	29
PCB 216D - PRF/PW TWEAKING PCB	30
MAIN WIRING	
PERFORMANCE CHECK SHEET	32

Manual Reference: /fileserver1/officefiles/instructword/avm/AVM-1-C, edition 19.odt. Last modified February 29, 2024. Copyright © 2024 Avtech Electrosystems Ltd, All Rights Reserved.

INTRODUCTION

The AVM-1-C is a high performance instrument capable of generating up to 5V into 50Ω loads at repetition rates up to 25 MHz. The output pulse width is variable from 0.25 to 6 ns. The rise time is less than 100 ps, and the fall time is less than 250 ps.

Instruments with the "-P" model suffix can generate up to +5V, whereas instruments with the "-N" model suffix can generate up to -5V.

Instruments with the "-P-PN" suffix generate up to +5V at the main output, and are supplied with an inverting transformer that can be installed on the output to generate a negative signal.

Instruments with the "-N-PN" suffix generate up to -5V at the main output, and are supplied with an inverting transformer that can be installed on the output to generate a positive signal.

The output is designed to drive 50Ω loads. (A 50Ω load is required for proper operation.) The output is AC-coupled.

This instrument is intended for use in research and development laboratories.

AVAILABLE OPTIONS

The AVM-1-C is available with several options:

-AK1 Option: Recommended accessory kit. Consists of three SMA, 18 GHz, 2 Watt attenuators (10, 20 & 30 dB) for use on the output, and two 50 Ohm, 1 GHz, 1 Watt feed-through terminators (one SMA, one BNC) for use on external trigger inputs.

-D Option: this option adds a 0-5 ns adjustable delay feature, which operates in both the internal and external trigger modes.

-EA Option: the output amplitude can be controlled by an externally generated 0 to +10V analog control voltage.

-ED Option: the 0-5 ns delay can be controlled by an externally generated 0 to +10V analog control voltage. Units with the -ED option incorporate the -D option as well.

-EA Option: the output offset can be controlled by an externally generated 0 to +10V analog control voltage.

-EO Option: an internally generated DC offset can be controlled by an externally generated 0 to +10V analog control voltage. Units with the -EO option incorporate the -OT option as well.

-EW Option: the output pulse width can be controlled by an externally generated 0 to +10V analog control voltage.

-M Option: a monitor output is provided.

-OT Option: an internally generated DC offset, controlled by a front-panel dial, can be added to the output.

SPECIFICATIONS

Model:	AVM-1-C ¹		
Maximum amplitude (into 50Ω) ^{3,4} :	5V		
Pulse width (FWHM) ³ :	0.25 - 6 ns		
Maximum PRF:	25 MHz		
Rise time (20% - 80%):	≤ 100 ps		
Fall time (80% - 20%):	≤ 250 ps		
Required load ⁹ :	50 Ohms		
Polarity⁵:	Specify -P, -N, -P-PN, or -N-PN		
Fixed propagation delay: (EXT TRIG in to pulse out)	≤ 30 ns (Ext trig in to pulse out)		
Variable delay, internal trigger mode:	0 to 50 ns		
Variable delay, external trigger mode:	Optional ^{3,6} , 0 to 5 ns		
Jitter (EXT TRIG in to pulse out):	±15 ps		
DC offset or bias insertion ^{3.7} :	Apply required DC offset to back panel solder terminals (± 50 Volts, 250 mA max) An internally-generated offset function is optional ⁷ .		
External trigger	External trigger mode: TTL-level (Low: 0V, High: +3V to +5V), 10 ns or wider.		
Trigger input impedance:	50Ω (optionally 1 kΩ ¹⁰)		
Sync output:	+3 Volts, width varies with PRF (always > 10 ns), will drive 50Ω		
Monitor output option ⁸ :	Provides a 20 dB attenuated coincident replica of main output		
Connectors:	Out, Monitor: SMA, Trig, Sync: BNC,		
Optional accessory kit: (attenuators and terminators)	Add the suffix "-AK1" to the model number to include the recommended accessory kit. Consists of three SMA, 18 GHz, 2 Watt attenuators (10, 20 & 30 dB) for use on the output, and two 50 Ohm, 1 GHz, 1 Watt feed-through terminators (one SMA, one BNC) for use on external trigger inputs.		
Optional accessory kit: (coaxial cables and adapters)	Add the suffix "-AK8" to the model number to include the recommended accessory kit. Consists of one 12-inch SMA-M/SMA-M PE-SR405FL coaxial cable, one 12-inch SMA-M/SMA-MRG-316 coaxial cable, one 36-inch SMA-M/SMA-M RG-316 coaxial cable, one 24-inch SMA-M/BNC-M RG-316 coaxial cable, one 36-inch BNC-M/BNC-M RG58C/U coaxial cable, one SMA-F to BNC-M adapter, one SMA-M to BNC-F adapter, one SMA-F to SMA-F adapter, and one SMA-F to solder cup adapter		
Dimensions (H x W x D):	100 x 215 x 375 mm (3.9" x 8.5" x 14.8"		
Power requirement:	100 - 240 V, 50 - 60 Hz		
Temperature range:	+5°C to +40°C		

-C suffix indicates stand-alone lab instrument with internal clock and line powering. No suffix indicates miniature module requiring DC power and external 1) -B suffix indicates IEEE-488.2 GPIB and RS-232 control of amplitude, pulse width, PRF and delay (See http://www.avtechpulse.com/gpib.

2)

3) For analog electronic control (0 to +10V) of amplitude, pulse width, delay or offset suffix model number with -EA or -EW or -ED or -EO. Electronic control units also include the standard front panel one-turn controls. Not available on -B units (since remote control is already provided digitally). 4) For -C units and modules, the minimum useful amplitude is 20% of the maximum. For -B units, it is 4% of the maximum, due to the use of internally-switched attenuators. For operation at lower amplitudes, best results will be obtained by setting the amplitude near full-scale and using external attenuators on the

output. 5) Indicate desired polarity by suffixing model number with -P or -N (i.e. positive or negative), or -P-PN or -N-PN for dual polarity option on -C units and modules (where the suffix preceding -PN indicates the polarity at the mainframe output port), or -PN for the dual-polarity option on -B units. Indicate delay option by suffixing model number with -D. For internally generated DC offset option (0 to ±5 V, one turn control) add suffix -OT to model number. -OT and -EO options not available on modules. For monitor option add suffix -M.

6)

7) 8)

A 50 Ohm load is required. Other loads may damage the instrument. Consult Avtech (info@avtechpulse.com) if you need to drive other load impedances. 9) 10) An input impedance of $\geq 1 k\Omega$ can also be provided (-Z1K option).

REGULATORY NOTES

FCC PART 18

This device complies with part 18 of the FCC rules for non-consumer industrial, scientific and medical (ISM) equipment.

This instrument is enclosed in a rugged metal chassis and uses a filtered power entry module (where applicable). The main output signal is provided on a shielded connector that is intended to be used with shielded coaxial cabling and a shielded load. Under these conditions, the interference potential of this instrument is low.

If interference is observed, check that appropriate well-shielded cabling is used on the output connectors. Contact Avtech (info@avtechpulse.com) for advice if you are unsure of the most appropriate cabling. Also, check that your load is adequately shielded. It may be necessary to enclose the load in a metal enclosure.

If any of the connectors on the instrument are unused, they should be covered with shielded metal "dust caps" to reduce the interference potential.

This instrument does not normally require regular maintenance to minimize interference potential. However, if loose hardware or connectors are noted, they should be tightened. Contact Avtech (info@avtechpulse.com) if you require assistance.

EC DECLARATION OF CONFORMITY

CE

We Avtech Electrosystems Ltd. P.O. Box 5120, LCD Merivale Ottawa, Ontario Canada K2C 3H5

declare that this pulse generator meets the intent of Directive 2004/108/EG for Electromagnetic Compatibility. Compliance pertains to the following specifications as listed in the official Journal of the European Communities:

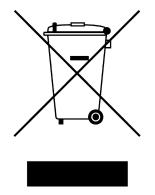
EN 50081-1 Emission

EN 50082-1 Immunity

and that this pulse generator meets the intent of the Low Voltage Directive 72/23/EEC as amended by 93/68/EEC. Compliance pertains to the following specifications as listed in the official Journal of the European Communities:

EN 61010-1:2001 Safety requirements for electrical equipment for measurement, control, and laboratory use

DIRECTIVE 2002/95/EC (RoHS)


This instrument is exempt from Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the Restriction of the use of certain Hazardous Substances (RoHS) in electrical and electronic equipment. Specifically, Avtech instruments are considered "Monitoring and control instruments" (Category 9) as defined in Annex 1A of Directive 2002/96/EC. The Directive 2002/95/EC only applies to Directive 2002/96/EC categories 1-7 and 10, as stated in the "Article 2 - Scope" section of Directive 2002/95/EC.

DIRECTIVE 2002/96/EC (WEEE)

European customers who have purchased this equipment directly from Avtech will have completed a "WEEE Responsibility Agreement" form, accepting responsibility for WEEE compliance (as mandated in Directive 2002/96/EC of the European Union and local laws) on behalf of the customer, as provided for under Article 9 of Directive 2002/96/EC.

Customers who have purchased Avtech equipment through local representatives should consult with the representative to determine who has responsibility for WEEE compliance. Normally, such responsibilities with lie with the representative, unless other arrangements (under Article 9) have been made.

Requirements for WEEE compliance may include registration of products with local governments, reporting of recycling activities to local governments, and financing of recycling activities.

AC POWER SUPPLY REGULATORY NOTES

This instrument converts the AC input power to the +24V DC voltage that powers the internal circuitry of this instrument using a Tamura AAD130SD-60-A switching power supply. According to the manufacturer, the Tamura AAD130SD-60-A has the following certifications:

UL60950-1 IEC60950 -1 CSA C22.2 No. 60950- 1 EN60950 -1

and is compliant with:

EN61000-3-2 EN61000-4-2 Level 2 EN61000-4-2 Level 3 (Air Only) EN61000-4-4 Level 3 EN61000-4-5 Level 3 EN61000-4-11 CISPR 11 and 22 FCC Part 15 Class B (conducted)

INSTALLATION

VISUAL CHECK

After unpacking the instrument mainframe and the transformer module, examine to ensure that they have not been damaged in shipment. Visually inspect all connectors, knobs, and handles. Confirm that a power cord and an instrumentation manual (this manual), are with the instrument. If the instrument has been damaged, file a claim immediately with the company that transported the instrument.

POWER RATINGS

This instrument is intended to operate from 100 - 240 V, 50 - 60 Hz.

The maximum power consumption is 57 Watts. Please see the "FUSES" section for information about the appropriate AC and DC fuses.

This instrument is an "Installation Category II" instrument, intended for operation from a normal single-phase supply.

CONNECTION TO THE POWER SUPPLY

An IEC-320 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket. The other end of the detachable power cord plugs into the local mains supply. Use only the cable supplied with the instrument. The mains supply must be earthed, and the cord used to connect the instrument to the mains supply must provide an earth connection. (The supplied cord does this.)

Warning: Failure to use a grounded outlet may result in injury or death due to electric shock. This product uses a power cord with a ground connection. It must be connected to a properly grounded outlet. The instrument chassis is connected to the ground wire in the power cord.

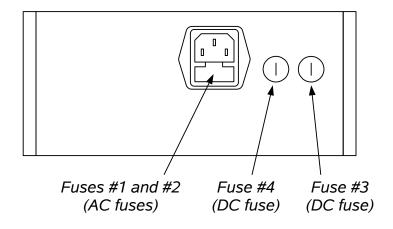
The table below describes the power cord that is normally supplied with this instrument, depending on the destination region:

Destination Region	Description	Option Manufacturer		Part Number	
United Kingdom, Hong Kong, Singapore, Malaysia	BS 1363, 230V, 50 Hz	-AC00 Qualtek		370001-E01	
Australia, New Zealand	AS 3112:2000, 230-240V, 50 Hz	-AC01 Qualtek		374003-A01	
Continental Europe, Korea, Indonesia, Russia	European CEE 7/7 "Schuko" 230V, 50 Hz			364002-D01	
North America, Taiwan	NEMA 5-15, 120V, 60 Hz			312007-01	
Switzerland	SEV 1011, 230V, 50 Hz	-AC06 Qualtek		378001-E01	
South Africa, India	SABS 164-1, 220-250V, 50 Hz -AC17 Vo		Volex	2131H 10 C3	
Japan	JIS 8303, 100V, 50-60 Hz -AC1		Qualtek	397002-01	
Israel	SI 32, 220V, 50 Hz	-AC19 Qualtek		398001-01	
China	GB 1002-1, 220V, 50 Hz	-AC22 Volex 2137H 10		2137H 10 C3	

PROTECTION FROM ELECTRIC SHOCK

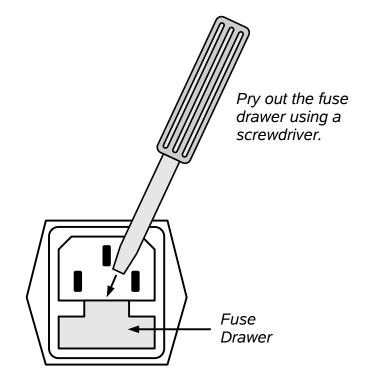
Operators of this instrument must be protected from electric shock at all times. The owner must ensure that operators are prevented access and/or are insulated from every connection point. In some cases, connections must be exposed to potential human contact. Operators must be trained to protect themselves from the risk of electric shock. This instrument is intended for use by qualified personnel who recognize shock hazards and are familiar with safety precautions required to avoid possibly injury. In particular, operators should:

- 1. Keep exposed high-voltage wiring to an absolute minimum.
- 2. Wherever possible, use shielded connectors and cabling.
- 3. Connect and disconnect loads and cables only when the instrument is turned off.
- 4. Keep in mind that all cables, connectors, oscilloscope probes, and loads must have an appropriate voltage rating.
- 5. Do not attempt any repairs on the instrument, beyond the fuse replacement procedures described in this manual. Contact Avtech technical support (see page 2 for contact information) if the instrument requires servicing. Service is to be performed solely by qualified service personnel.


ENVIRONMENTAL CONDITIONS

This instrument is intended for use under the following conditions:

- 1. indoor use;
- 2. altitude up to 2 000 m;
- 3. temperature 5 °C to 40 °C;
- 4. maximum relative humidity 80 % for temperatures up to 31 °C decreasing linearly to 50 % relative humidity at 40 °C;
- 5. Mains supply voltage fluctuations up to ± 10 % of the nominal voltage;
- 6. no pollution or only dry, non-conductive pollution.


FUSES

This instrument contains four fuses. All are accessible from the rear-panel. Two protect the AC prime power input, and two protect the internal DC power supplies. The locations of the fuses on the rear panel are shown in the figure below:

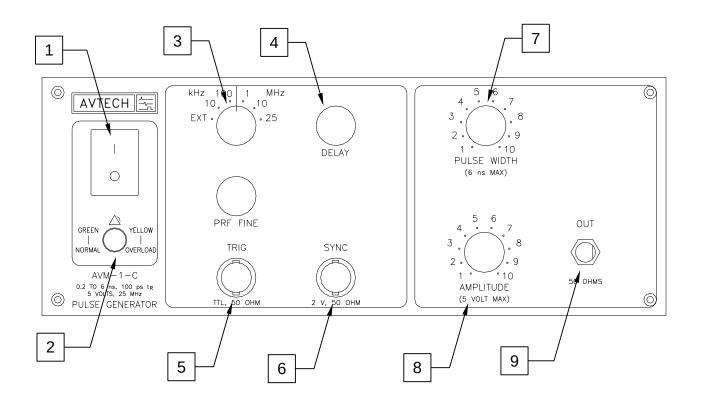
AC FUSE REPLACEMENT

To physically access the AC fuses, the power cord must be detached from the rear panel of the instrument. The fuse drawer may then be extracted using a small flat-head screwdriver, as shown below:

DC FUSE REPLACEMENT

The DC fuses may be replaced by inserting the tip of a flat-head screwdriver into the fuse holder slot, and rotating the slot counter-clockwise. The fuse and its carrier will then pop out.

FUSE RATINGS


The following table lists the required fuses:

	Nominal			Recommended F	Replacement Part
Fuses	Mains	Rating	Case Size	Littelfuse Part	Digi-Key Stock
	Voltage			Number	Number
#1, #2 (AC)	100-240V	0.5A, 250V, Time-Delay	5×20 mm	0218.500HXP	F2416-ND
#3 (DC)	N/A	0.8A, 250V, Time-Delay	5×20 mm	0218.800HXP	F2418-ND
#4 (DC)	N/A	0.5A, 250V, Time-Delay	5×20 mm	0218.500HXP	F2416-ND

The recommended fuse manufacturer is Littelfuse (http://www.littelfuse.com).

Replacement fuses may be easily obtained from Digi-Key (http://www.digikey.com) and other distributors.

FRONT PANEL CONTROLS

- 1. <u>POWER Switch.</u> This is the main power switch.
- 2. <u>OVERLOAD Indicator</u>. When the instrument is powered, this indicator is normally green, indicating normal operation. If this indicator is yellow, an internal automatic overload protection circuit has been tripped. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a very low impedance), the protective circuit will disable the output of the instrument and turn the indicator light yellow. The light will stay yellow (i.e. output disabled) for about 5 seconds after which the instrument will attempt to re-enable the output (i.e. light green) for about 1 second. If the overload condition persists, the output will be disabled again (i.e. light yellow) for another 5 seconds. If the overload condition has been removed, the instrument will resume normal operation.

This overload indicator may flash yellow briefly at start-up. This is not a cause for concern.

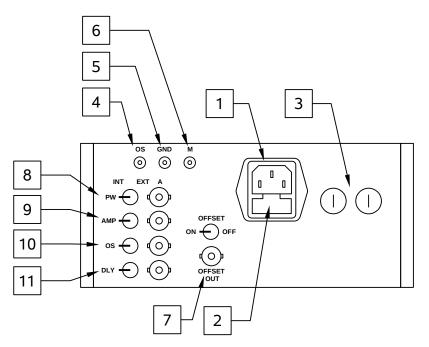
3. <u>PRF Range Switch and Fine Dial</u>. This switch sets the pulse repetition frequency (PRF) range of the internal oscillator. The marked value of each position is the upper limit of the range, approximately. The fine dial directly below the switch varies the PRF within the set range. When set to the "EXT" position, the instrument is

triggered by externally-generated pulses applied to the TRIG input.

- 4. <u>DELAY Control</u>. Controls the relative delay between the reference output pulse provided at the SYNC output and the main output. This delay is variable over the range of 0 to 50 ns, approximately. At high frequencies, this delay should be kept nearly fully counter-clockwise, so that the delay does not exceed the period (otherwise, the triggering may stop). The variable delay circuitry only functions in the internal trigger mode. The delay is not adjustable when triggering externally.
- 5. <u>TRIG Input</u>. The external trigger signal is applied at this input when the PRF range switch is in the "EXT" position.

For standard units, a TTL logic level pulse (i.e., 0V = TTL LOW, +3V to +5V = TTL HIGH) is required to trigger this input, and the input impedance is 50Ω to ground (or $1k\Omega$, for units with the -Z1K option).

The input pulse width should be > 10 ns.


- <u>SYNC Output</u>. This output precedes the main output, and is typically used to trigger an oscilloscope. When triggering internally, the SYNC pulse width varies, but is always > 10 ns. When triggering externally, the SYNC output is a buffered replica of the TRIG input. The amplitude is fixed at +3V approximately, and this output will drive 50 Ohms or higher.
- 7. <u>Pulse Width Control</u>. This dial controls the pulse width.
- 8. <u>Amplitude Control</u>. This dial controls the pulse amplitude.
- 9. <u>OUT Connector</u>. This is the main output. (This output *requires* a 50 Ω load to function properly).

These controls may also be present, depending on the options ordered. They are not shown in the above figure.

- 10. <u>RELATIVE DELAY Control</u>. (Optional feature. Present on units with the -D or -ED options only.) The output pulse position or propagation delay can be varied over a 0 to 5 ns range using this control. This delay functions in both the internal and external trigger modes, unlike the standard delay controls (item 4).
- 11.<u>OFFSET Control</u>. (Optional feature. Present on units with the -OT or -EO options only.) A DC offset in the range of -5V to +5V can be added to the output using this control. The rear-panel "OFFSET ON/OFF" switch must be set to "ON" to enable this feature. For -EO units, the rear-panel "OS INT/EXT" switch must also be set to "INT" for this control to function.

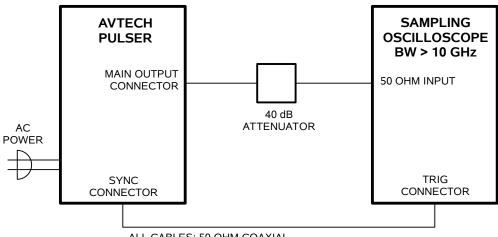
For dual-polarity units, refer to the "POLARITY INVERSION" section for additional details about offset implementation when an inverting transformer is used.

REAR PANEL CONTROLS

The exact positioning of the controls may vary.

- 1. <u>AC POWER INPUT</u>. An IEC-320 C14 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket.
- 2. <u>AC FUSE DRAWER</u>. The two fuses that protect the AC input are located in this drawer. Please see the "FUSES" section of this manual for more information.
- 3. <u>DC FUSES</u>. These two fuses protect the internal DC power supplies. Please see the "FUSES" sections of this manual for more information.
- 4. <u>OS INPUT CONNECTOR</u>. A DC offset in the range of ±50V (250 mA max) may be applied to this solder terminal. The DC offset will appear on the output. When this feature is not used, the OS input should be connected to ground (using the adjacent GND connector). This is especially important when driving loads containing a diode.
- 5. <u>GND CONNECTOR</u>. This solder terminal is connected to ground. It may be used to ground the OS input connector.
- M OUTPUT CONNECTOR. (Present on units with -M option only.) This SMA connector output provides a 20 dB attenuated coincident replica of main output, for monitoring purposes.
- OFFSET ON/OFF SWITCH & OUTPUT (Optional, -EO and -OT units only). This switch enables the *internally-generated* offset feature when it is set to "ON". The

internally generated offset is available at the adjacent "OFFSET OUT" BNC connector for monitoring purposes.


When this switch is set to "OFF", an *externally-generated* offset can be added to the output by applying a DC voltage to the "OS" terminal (item 4).

To add an internally-generated offset to inverted pulses on AVM units with the dual polarity option (-PN), connect the "OFFSET OUT" BNC terminal to the DC terminal of the AVX-2-T inverting transformer (see the "POLARITY INVERSION" sections in this manual for further details).

- <u>PW INT/EXT SWITCH AND CONNECTOR (Optional, -EW units only)</u>. To control the pulse width of the output with an external DC voltage, set the two-position switch to the EXT position and apply 0 to +10V to the BNC Connector (R_{IN} ≥ 10 kΩ). When this switch is in the "INT" position, the pulse width is controlled by the front-panel controls.
- 9. <u>AMP INT/EXT SWITCH AND CONNECTOR (Optional, -EA units only)</u>. To control the amplitude of the output with an external DC voltage, set the two-position switch to the EXT position and apply 0 to +10V to the BNC Connector ($R_{IN} \ge 10 \text{ k}\Omega$). When this switch is in the "INT" position, the amplitude is controlled by the front-panel controls.
- 10. <u>OS INT/EXT SWITCH AND CONNECTOR (Optional, -EO units only)</u>. To control the offset of the output with an external DC voltage, set the two-position switch to the EXT position and apply 0 to +10V to the BNC Connector ($R_{IN} \ge 10 \text{ k}\Omega$). When this switch is in the "INT" position, the offset is controlled by the front-panel controls.
- 11. DLY INT/EXT SWITCH AND CONNECTOR (Optional, -ED units only). To control the relative delay of the output with an external DC voltage, set the two-position switch to the EXT position and apply 0 to +10V to the BNC Connector ($R_{IN} \ge 10 \text{ k}\Omega$). When this switch is in the "INT" position, the pulse width is controlled by the front-panel controls.

BASIC TEST ARRANGEMENT

The AVM-1-C should be tested with a sampling oscilloscope with a bandwidth of at least 10 GHz to properly observe the high-speed waveform. A typical test arrangement is shown below:

ALL CABLES: 50 OHM COAXIAL

The attenuator is required to prevent damage to the sampling oscilloscope.

GENERAL OPERATING NOTES

It is recommended that the DELAY control first be set maximum counter-clockwise and then be turned clockwise until a stable display is obtained. The stability of the display on some sampling oscilloscopes is very sensitive to the trigger delay setting, particularly at high PRF (e.g. > 10 MHz). If necessary, consult your oscilloscope's instruction manual for the proper triggering method.

AMPLITUDE INTERACTION

Some properties of the output pulse may change as a function of the amplitude setting. For some demanding applications, it may be desirable to use a combination of external attenuators and the amplitude pot to achieve the desired output amplitude.

POLARITY INVERSION

Instruments with the "-P-PN" suffix generate 0 to +15V at the main output, and are supplied with an AVX-2 inverting transformer that can be installed on the mainframe output. A negative pulse is then obtained at the out port of the AVX-2 module.

Instruments with the "-N-PN" suffix generate 0 to -15V at the main output, and are supplied with an AVX-2 inverting transformer that can be installed on the mainframe output. A positive pulse is then obtained at the out port of the AVX-2 module.

When using the transformer with dual-polarity models, the external offset must be added to the DC terminal of the inverting transformer. Do not apply the offset to the rear-panel offset terminal on the mainframe. For units with the OT or EO options, connect a lead from the rear panel "OFFSET OUT" BNC connector to the DC terminal of the AVX-2-T unit. The DC offset at the output of the AVX-2-T unit is then controlled by the front-panel offset control.

OPERATION AT LOW AMPLITUDES

This instrument will generate the best waveforms when operated near maximum amplitude. If amplitudes less than 1/3 of the full-scale value are desired, better results will be obtained if the pulse generator is operated at a higher amplitude, and an attenuator is connected to the output. Avtech recommends the ATT-0444-XX-SMA-02 series of 18 GHz coaxial attenuators from Midwest Microwave, http://www.midwestmicrowave.com/. (The "XX" in the part number is replaced with the numeric attenuation value in dB). Three of these attenuators (10 dB, 20 dB, and 30 dB) are included in the optional -AK1 accessory kit.

OSCILLOSCOPE SELECTION AND BANDWIDTH ISSUES

To observe a signal with a rise time of t_R , the bandwidth of the oscilloscope must exceed $1/t_R$. For the AVM-1-C, $1/t_R = 1 / 100$ ps = 10 GHz. For best results, the bandwidth of the oscilloscope (and any attenuators and cables used in the measurement system) should exceed 15 GHz.

Most oscilloscopes with suitable bandwidth are "sampling" oscilloscopes, which are more specialized in nature than slower conventional "real-time" oscilloscopes. Most sampling oscilloscopes have a very limited input voltage range (±1V, for example). It is essential in these cases to use high-bandwidth attenuators on the input of the oscilloscope, to avoid over-driving or damaging the oscilloscope.

If a high-bandwidth sampling oscilloscope is not available, a slower real-time oscilloscope can be used, but the rising and falling edges will not be accurately displayed. Significant overshoot and ringing will be observed as a result of the oscilloscope's limited bandwidth. (Contrary to some user's expectations, low-bandwidth oscilloscopes *do not* "round off" the signal like a classic low-pass filter.) These are measurement artifacts, and are not normally present on the actual output.

MINIMIZING WAVEFORM DISTORTIONS

USE 50 OHM TRANSMISSION LINES AND LOADS

Connect the load to the pulse generator with 50Ω transmission lines (e.g. RG-58 or RG-174 cable).

This instrument requires a 50Ω load for proper operation. It will not properly drive a high-impedance load. The output stage will be damaged if it is operated into an open circuit (or any other high impedance). Failures due to improper output loading are not covered by the warranty.

USE LOW-INDUCTANCE LOADS

Lenz's Law predicts that for an inductive voltage spike will be generated when the current through an inductance changes. Specifically, $V_{SPIKE} = L \times dI_{LOAD}/dt$, where L is the inductance, I_{LOAD} is the load current change, and t is time. For this reason, it is important to keep any parasitic in the load low. This means keeping wiring short, and using low inductance components. In particular, wire-wound resistors should be avoided.

PREVENTING DAMAGE

The AVM-1-C may fail if triggered at a PRF greater than 25 MHz.

This unit is designed to operate into a load impedance of 50 Ohms and the output stage will be damaged if it is operated into an open circuit (or any other high impedance). Failures due to improper output loading are not covered by the warranty.

The lifetime of the switching elements in the pulse generator module is proportional to the running time of the instrument. For this reason the prime power to the instrument should be turned off when the instrument is not in use.

MECHANICAL INFORMATION

TOP COVER REMOVAL

If necessary, the interior of the instrument may be accessed by removing the four Phillips screws on the top panel. With the four screws removed, the top cover may be slid back (and off).

Always disconnect the power cord and allow the instrument to sit unpowered for 10 minutes before opening the instrument. This will allow any internal stored charge to discharge.

There are no user-adjustable internal circuits. For repairs other than fuse replacement, please contact Avtech (info@avtechpulse.com) to arrange for the instrument to be returned to the factory for repair. Service is to be performed solely by qualified service personnel.

Caution: High voltages are present inside the instrument during normal operation. Do not operate the instrument with the cover removed.

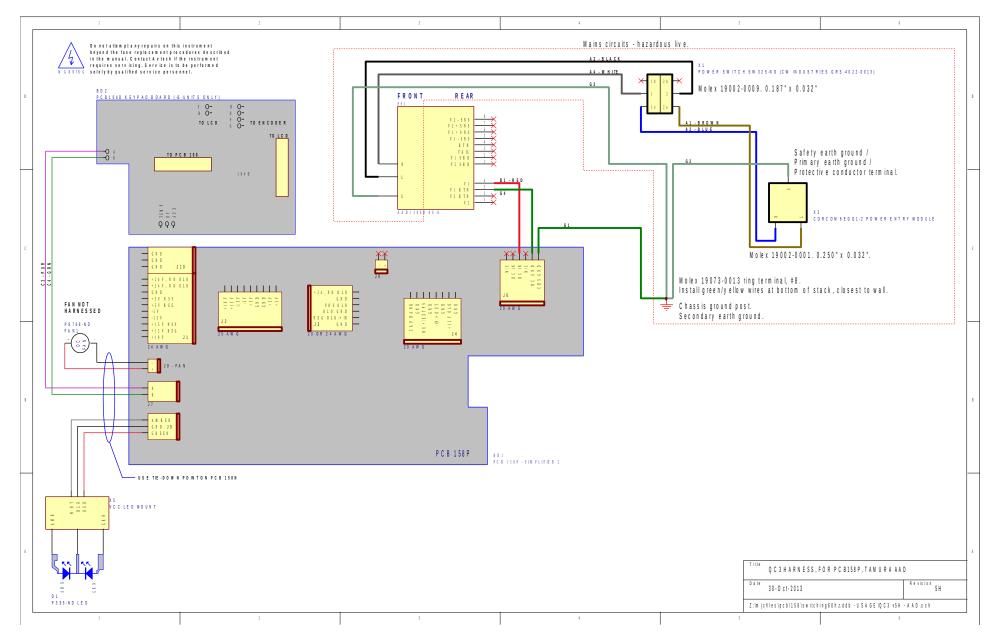
ELECTROMAGNETIC INTERFERENCE

To prevent electromagnetic interference with other equipment, all used outputs should be connected to shielded loads using shielded coaxial cables. Unused outputs should be terminated with shielded coaxial terminators or with shielded coaxial dust caps, to prevent unintentional electromagnetic radiation. All cords and cables should be less than 3m in length.

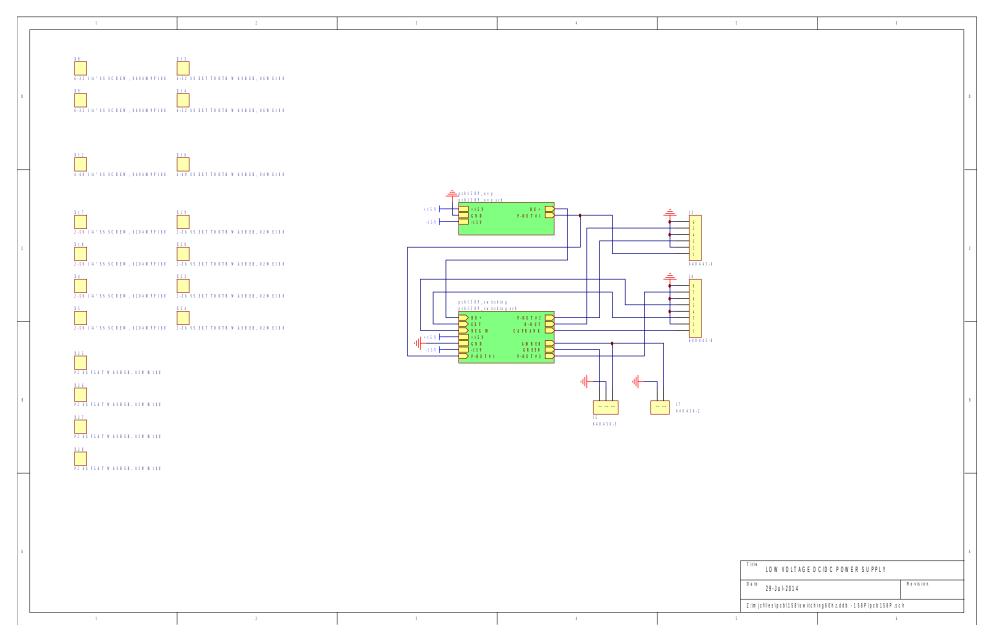
MAINTENANCE

REGULAR MAINTENANCE

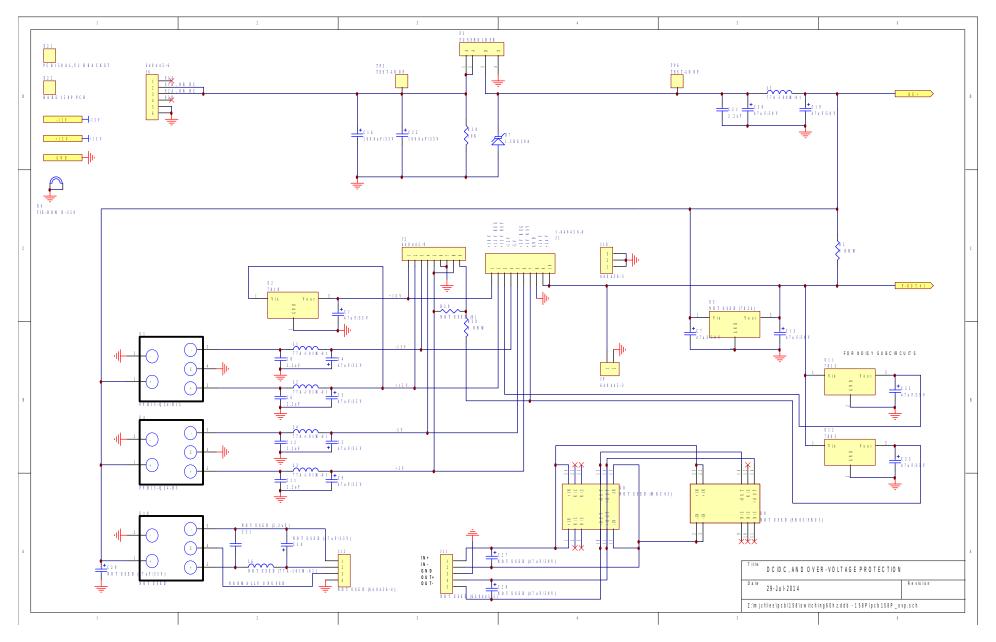
This instrument does not require any regular maintenance.


On occasion, one or more of the four rear-panel fuses may require replacement. All fuses can be accessed from the rear panel. See the "FUSES" section for details.

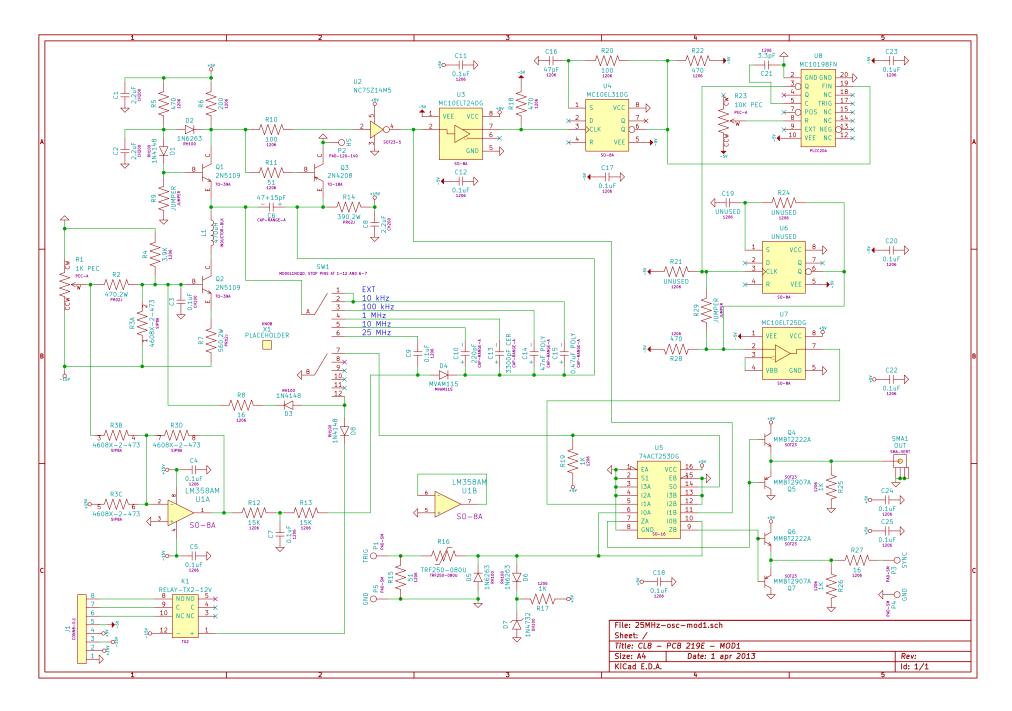
CLEANING

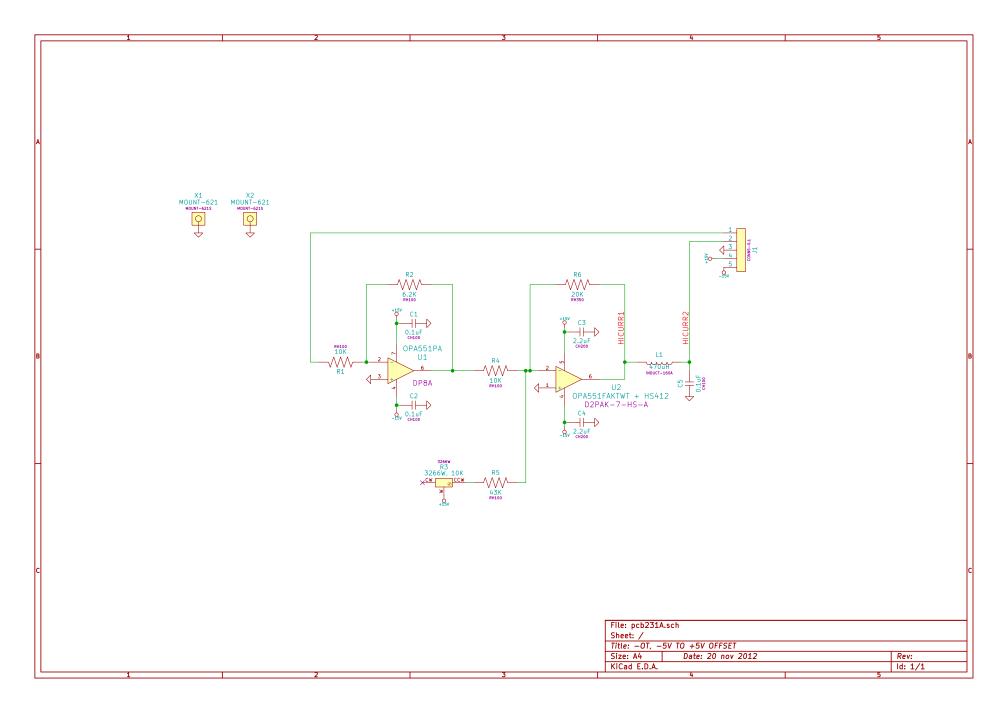

If desired, the interior of the instrument may be cleaned using compressed air to dislodge any accumulated dust. (See the "TOP COVER REMOVAL" section for instructions on accessing the interior.) No other cleaning is recommended.

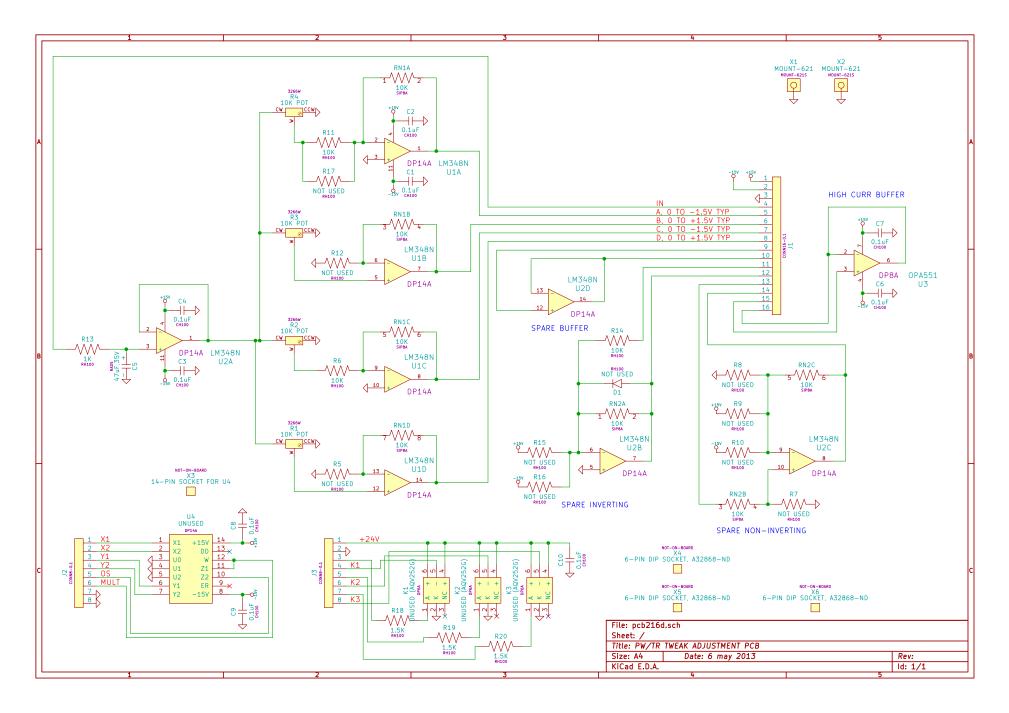
WIRING DIAGRAMS

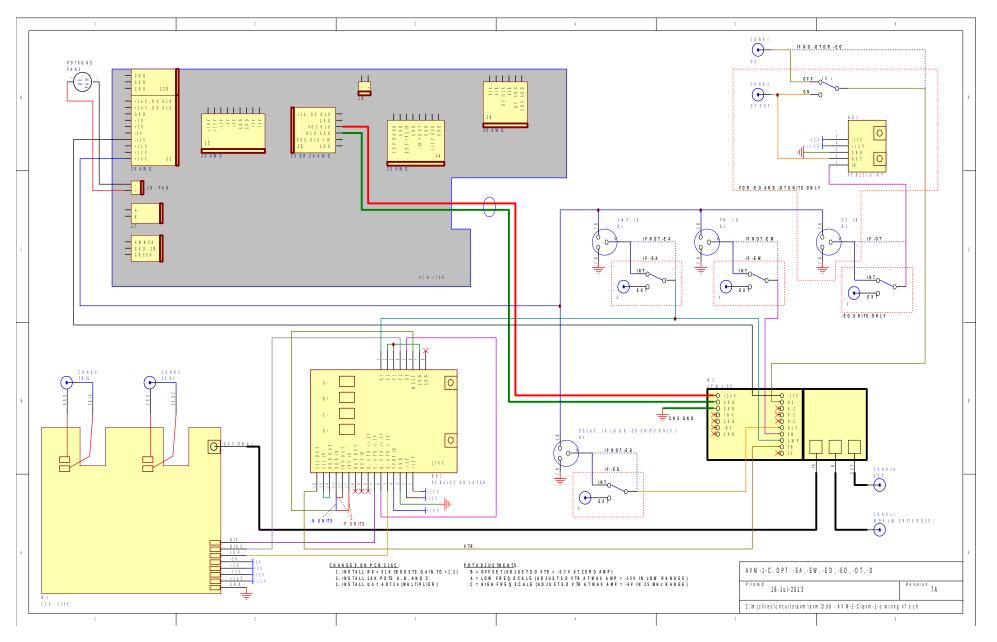

WIRING OF AC POWER

PCB 158P - LOW VOLTAGE POWER SUPPLY, 1/3


PCB 158P - LOW VOLTAGE POWER SUPPLY, 2/3


PCB 158P - LOW VOLTAGE POWER SUPPLY, 3/3


PCB 219E - INTERNAL OSCILLATOR AND EXTERNAL TRIGGER CIRCUIT


PCB 231A - INTERNAL DC OFFSET FUNCTION

PCB 216D - PRF/PW TWEAKING PCB

MAIN WIRING

PERFORMANCE CHECK SHEET