INSTRUCTIONS # MODEL AVMM-C PULSE GENERATOR S.N.: ### **WARRANTY** Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied. #### TECHNICAL SUPPORT Phone: 613-226-5772 or 1-800-265-6681 Fax: 613-226-2802 or 1-800-561-1970 E-mail: info@avtechpulse.com World Wide Web: http://www.avtechpulse.com # **TABLE OF CONTENTS** | WARRANTY | 2 | |--|----| | TABLE OF CONTENTS | 4 | | FIG. 1: PULSE GENERATOR TEST ARRANGEMENT | 5 | | GENERAL OPERATING INSTRUCTIONS | 6 | | FIG. 2: FRONT PANEL CONTROLS | 8 | | FRONT PANEL CONTROLS | 9 | | FIG. 3: BACK PANEL CONTROLS | 11 | | BACK PANEL CONTROLS | 12 | | FIG. 4: SYSTEM BLOCK DIAGRAM | 13 | | SYSTEM DESCRIPTION AND REPAIR PROCEDURE | 14 | | PERFORMANCE CHECK SHEET | 15 | # FIG. 1: PULSE GENERATOR TEST ARRANGEMENT #### GENERAL OPERATING INSTRUCTIONS - The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 5 gigahertz. - 2) The use of 40 db attenuator at the sampling scope vertical input channel will insure a peak input signal to the sampling scope of less than one volt. - 3) The SYNC output channel provides a +500 mV 10 ns pulse. - 4) To obtain a stable output display the PRF control on the front panel should be set mid-range while the PRF range switch may be in either range. The front panel TRIG toggle switch should be in the INT position. The front panel DELAY control and the scope triggering controls are then adjusted to obtain a stable output. It is recommended that the DELAY control first be set max counter clockwise and then turned clockwise until a stable display is obtained. The scope may then be used to set the desired PRF by rotating the PRF control and by means of the PRF range switch. The stability of the display on some sampling scopes is very sensitive to the trigger delay setting, particularly at high PRF (e.g. 10 to 25 MHz). If necessary, consult your sample scope instructions manual for the proper triggering method. - 5) The output pulse width is controlled by means of the front panel one turn PW control. The control should initially be set maximum clockwise and the pulse width adjusted using an oscilloscope. Rotation of the PW pot causes the position of the falling edge of the pulse to change. For the PRF range of 0 to 25 MHz, the output pulse width is variable over the range of 0 to 5 ns. CAUTION: The output pulse width is PRF-dependent and so the PW reading given by the dial will not be valid at all PRF settings. - 6) The output pulse amplitude is controlled by means of the front panel one turn AMP control. - 7) To DC offset the output pulse connect a DC power supply set to required DC offset value to the back panel terminals marked O.S. The maximum attainable DC offset voltage is ± 50 volts (for units without the OT or EO option only). - 8) The unit provides a 300 ps rise time at the OUT port. The rise and fall time can be set at approximately 0.3, 0.4, 0.7, 1.2 and 2.0 ns using the five position front panel TR switch. To use the switch connect the OUT port to the TRIN port. The variable rise time output is then available at the TROUT port. - 9) An external clock may be used to control the output PRF of the unit by setting the front panel TRIG toggle switch in the EXT position and applying a 10 ns (or wider) TTL level pulse to the TRIG BNC connector input. The AVMM unit triggers on the rising edge of the input trigger pulse. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the TRIG output. - 10) <u>WARNING</u>: Model AVMM-C may fail if triggered at a PRF greater than 25.0 MHz. - 11) The Model AVMM-C pulse generator can withstand an infinite VSWR on the output port. - 12) <u>Dual Polarity Option</u>. To invert the output of the AVMM unit, connect the AVX-2-T unit to the OUT port. An inverted pulse is then obtained at the OUT port of the AVX-2-T unit. To offset the inverted pulse, apply the desired DC potential to the DC terminal on the AVX-2-T module. Note that a male to male SMA sex changer must be used to connect the AVX-2-T module to the OUT SMA terminal. - 13) The AVMM-C unit can be converted from 110 to 220V 50-60 Hz operation by adjusting the voltage selector card in the rear panel fused voltage selector-cable connector assembly. - 14) For additional assistance: Tel: 1-800-265-6681 Fax: (613) 226-2802 # FIG. 2: FRONT PANEL CONTROLS #### FRONT PANEL CONTROLS - (1) <u>ON-OFF Switch</u>. Applies basic prime power to all stages. - (2) PRF Control. PRF RANGE and PRF controls determine output PRF as follows: #### PRF MIN PRF MAX | Range 1 | 10 kHz | 40 kHz | |---------|---------|---------| | Range 2 | 40 kHz | 150 kHz | | Range 3 | 150 kHz | 600 kHz | | Range 4 | 600 kHz | 3.0 MHz | | Range 5 | 3.0 MHz | 12 MHz | | Range 6 | 12 MHz | 25 MHz | - (3) <u>DELAY Control</u>. Controls the relative delay between the reference output pulse provided at the SYNC output (4) and the main output (7). This delay is variable over the range of 0 to at least 100 ns. - (4) <u>SYNC Output</u>. This output precedes the main output (7) and is used to trigger the sampling scope time base. The output is a 500 mV 10 ns (approx.) pulse capable of driving a fifty ohm load. - (5) PW Control. A one turn control which varies the output pulse width. - (6) <u>AMP Control</u>. A one turn control which varies the output pulse amplitude from 0 to max output to a fifty ohm load. - (7) <u>OUT Connector</u>. SMA connector provides 300 ps rise time output to a fifty ohm load. - (8) <u>EXT-INT Control</u>. With this toggle switch in the INT position, the PRF of the AVMM unit is controlled via an internal clock which in turn is controlled by the PRF controls. With the toggle switch in the EXT position, the AVMM unit requires a 10 ns (or wider) TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source. - (9) TRIG IN. When the INT-EXT switch is in the EXT position, a TTL level trigger pulse is applied to the BNC connector. - (10) <u>RISETIME TR (Option).</u> A five position switch which provides output rise and fall times of about 0.3, 0.4, 0.7, 1.2 and 2.0 ns. - (11) TR IN. To use variable rise time option connect OUT port to TR IN port. - (12) TR OUT. With OUT port connected to TR IN port, provides output to 50 ohm load. # FIG. 3: BACK PANEL CONTROLS ### BACK PANEL CONTROLS - (1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.25 A SB). - (2) DC OFFSET Input. To DC offset the output pulse, connect a DC power supply set to the desired offset value to these terminals. The maximum allowable DC offset voltage is ± 50 Volts (± 200 mA). # FIG. 4: SYSTEM BLOCK DIAGRAM ### SYSTEM DESCRIPTION AND REPAIR PROCEDURE The AVMM-C consists of a pulse generator module (AVMM-PG), a clock module (AVMM-CL), a -5.8 volt power supply module (AVMM-PS) and a power supply board which supplies +24 volts (800 mA max) to the pulse generator module. In the event that the unit malfunctions, remove the instrument cover by removing the four Phillips screws on the back panel of the unit. The top cover may then be slid off. Measure the voltage at the +24 V pin of the PG module. If this voltage is substantially less than +24 volts, unsolder the line connecting the power supply and PG modules and connect 50 ohm 10 W load to the PS output. The voltage across this load should be about +24 V DC. If this voltage is substantially less than 24 volts the PS module is defective and should be repaired or replaced. If the voltage across the resistor is near 24 volts, then the PG module should be replaced or repaired. The sealed PG module must be returned to Avtech for repair (or replacement). The clock module provides a 20 ns TTL level trigger pulse at pin M to trigger the PG module and a 20 ns 0.5 V sync pulse at pin S to trigger the sampling scope display device. The output at pin S precedes the output at pin M by 0 to 100 ns depending on the DELAY control setting. With the INT-EXT switch in the EXT position, the clock module is disconnected from the PG module. The clock module is functioning properly if: - a) 10 ns, or wider, outputs are observed at pins M and S. - b) The PRF of the outputs can be varied over the range of 10 KHz to 25 MHz using the PRF, PRF FINE and PRF RANGE controls. - c) The relative delay between the pin M and S outputs can be varied by at least 100 ns by the DELAY control. The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed. # PERFORMANCE CHECK SHEET