AVTECH
P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265

TEL: 888-670-8729 (USA \& Canada) or +1-613-226-5772 (Intl) FAX: 800-561-1970 (USA \& Canada) or +1-613-226-2802 (Intl)
info@avtechpulse.com - http://www.avtechpulse.com/
x BOX 5120, LCD MERIVALE OTTAWA, ONTARIO CANADA K2C 3H4

INSTRUCTIONS

MODEL AVO-6A1-B-OS-P-M-S-SCHA
0 TO 1 Amp (0 to 50 Volts)
10 kHz LASER DIODE DRIVER WITH IEEE 488.2 AND RS-232 CONTROL

SERIAL NUMBER: \qquad

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

TECHNICAL SUPPORT

Phone: 888-670-8729 (USA \& Canada) or +1-613-226-5772 (Intl)
Fax: 800-561-1970 (USA \& Canada) or +1-613-226-2802 (Intl)
E-mail: info@avtechpulse.com
World Wide Web: http://www.avtechpulse.com

TABLE OF CONTENTS

WARRANTY. 2
TECHNICAL SUPPORT. 2
TABLE OF CONTENTS 3
INTRODUCTION. 5
ORIGINAL QUOTATION 6
SPECIFICATIONS 8
EUROPEAN REGULATORY NOTES. 9
EC DECLARATION OF CONFORMITY. 9
DIRECTIVE 2002/95/EC (RoHS) 9
DIRECTIVE 2002/96/EC (WEEE). 9
INSTALLATION 11
VISUAL CHECK 11
POWER RATINGS. 11
CONNECTION TO THE POWER SUPPLY 11
PROTECTION FROM ELECTRIC SHOCK 12
ENVIRONMENTAL CONDITIONS 12
LABVIEW DRIVERS 13
FUSES 14
AC FUSE REPLACEMENT 14
DC FUSE REPLACEMENT. 15
FUSE RATINGS. 15
FRONT PANEL CONTROLS. 16
REAR PANEL CONTROLS. 18
GENERAL INFORMATION 20
AMPLITUDE CONTROL 20
LENZ'S LAW AND INDUCTIVE VOLTAGE SPIKES. 20
BASIC TEST ARRANGEMENT - WITHOUT OUTPUT MODULE 20
BASIC TEST ARRANGEMENT - WITH OUTPUT MODULE 21
BASIC PULSE CONTROL 22
TRIGGER MODES. 23
GATING MODES 24
OPERATIONAL CHECK. 25
PROGRAMMING YOUR PULSE GENERATOR. 27
KEY PROGRAMMING COMMANDS 27
ALL PROGRAMMING COMMANDS 28
MECHANICAL INFORMATION. 30
TOP COVER REMOVAL 30
RACK MOUNTING 30
ELECTROMAGNETIC INTERFERENCE 30
MAINTENANCE 31
REGULAR MAINTENANCE 31
CLEANING 31
WIRING DIAGRAMS 32
WIRING OF AC POWER 32
PCB 158K - LOW VOLTAGE DC POWER SUPPLY, 1/3 33
PCB 158K - LOW VOLTAGE DC POWER SUPPLY, 2/3 34
PCB 158K - LOW VOLTAGE DC POWER SUPPLY, 3/3 35
PCB 168B - HIGH VOLTAGE DC POWER SUPPLY. 36
PCB 104D - KEYPAD / DISPLAY BOARD, 1/3 37
PCB 104D - KEYPAD / DISPLAY BOARD, 2/3 38
PCB 104D - KEYPAD / DISPLAY BOARD, 3/3 39
MAIN WIRING 40
PERFORMANCE CHECK SHEET 41
Manual Reference: /fileserver1/officefiles/instructword/avo-6/AVO-6A1-B-OS-P-M-S-SCHA,edition1.odt. Last modified February 29, 2024. Copyright © 2024 Avtech Electrosystems Ltd, All Rights Reserved.

INTRODUCTION

The AVO-6A1-B-OS-P-M-S-SCHA is a high performance, GPIB and RS232-equipped instrument capable of generating 0 to +1 A at repetition rates up to 10 kHz . The pulse width is variable from 50 ns to 5 us, and the duty cycle may be as high as 5%. Rise and fall times are fixed at less than 1 ns . The AVO-6A1-B-OS-P-M-S-SCHA includes an internal trigger source, but it can also be triggered or gated by an external source. A front-panel pushbutton can also be used to trigger the instrument.

The AVO-6A1-B-OS-P-M-S-SCHA features front panel keyboard and adjust knob control of the output pulse parameters along with a four line by 40-character backlit LCD display of the output amplitude, pulse width, pulse repetition frequency, and delay. The instrument includes memory to store up to four complete instrument setups. The operator may use the front panel or the computer interface to store a complete "snapshot" of all key instrument settings, and recall this setup at a later time.

The instrument is protected against overload conditions by an automatic control circuit. An internal power supply monitor removes the power to the output stage for five seconds if an average power overload exists. After that time, the unit operates normally for one second, and if the overload condition persists, the power is cut again. This cycle repeats until the overload is removed.

The AVO-6A1-B-OS-P-M-S-SCHA consists of two parts, the mainframe and the output module. The mainframe is a voltage pulser, which generates 0 to $+50 \mathrm{~V}\left(\mathrm{~V}_{\text {out }}\right)$. The output module contains a 50Ω series resistance. The diode load is connected in series with this resistance, so that the current through the diode is normally given by:

$$
I_{\text {DIODE }}=\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {DIIDE }}\right) / 50 \Omega
$$

where $\mathrm{V}_{\text {DIODE }}$ is the voltage drop across the diode. The output module contains a socket suitable for use with the Vishay TSFF5210 diode.

This instrument is intended for use in research, development, test and calibration laboratories by qualified personnel.

ORIGINAL QUOTATION

```
Date: Fri, 16 Mar 2007 10:59:32 -0400
From: Avtech Sales
To: Marco Huber | Schulz-Electronic GmbH
Subject: Re: inquiry
To: Marco Huber
Schulz-Electronic GmbH
Marco.Huber@schulz-electronic.de
Marco,
We have not shipped an AVO-6A1-B to you, so I assume this inquiry is a
follow-up to quote 13669, given to Sandra Julg on February 28, 2007. Is
that right? If so, I am pleased to offer updated quotes below.
If the TSFF5210 is the only diode that the user intends to test, the -PN
option is probably unnecessary. A positive-only unit would cost less.
The LED package can be rotated to swap the anode and cathode pins as
required. However, if the user intends to test other diodes in the
future, the -PN option does give them greater flexibility. I have quoted
both ways (-PN and -P) below:
Quote number: 13697.01
Model number: AVO-6A1-B-OS-PN-M-S-SCHA
Description: Laser Diode Driver (Pulsed Voltage) with IEEE-488.2 GPIB
and RS-232 Computer Control Ports
-S-SCHA customized option: The output module includes a socket for the
Vishay TSFF5210 diode. (The socket will be a common part available from
Amp, Molex, or a similar manufacturer. This socket may be replaced if it
becomes worn out. Five replacement sockets will be provided.)
Polarity: dual polarity
Pricing, manuals, datasheets: http://www.avtechpulse.com/laser/avo-6a1
PDF datasheet:
http://www.avtechpulse.com/catalog/page056_cat11_avo-6_rev3.pdf
Price: $XxXXX US each, Ex-works, Ottawa, Canada. Before discount.
Quote valid for: 60 days
Estimated delivery: 45-60 days after receipt of order.
```

Quote number: 13697.02
Model number: AVO-6A1-B-OS-P-M-S-SCHA
Description: Laser Diode Driver (Pulsed Voltage) with IEEE-488.2 GPIB
and RS-232 Computer Control Ports
-S-SCHA customized option: The output module includes a socket for the
Vishay TSFF5210 diode. (The socket will be a common part available from
Amp, Molex, or a similar manufacturer. This socket may be replaced if it
becomes worn out. Five replacement sockets will be provided.)
Polarity: positive only
Pricing, manuals, datasheets: http://www.avtechpulse.com/laser/avo-6a1

```
PDF datasheet:
http://www.avtechpulse.com/catalog/page056_cat11_avo-6_rev3.pdf
Price: $XXXXX US each, Ex-works, Ottawa, Canada. Before discount.
Quote valid for: 60 days
Estimated delivery: 45-60 days after receipt of order.
Please call or email me if I can be of further assistance.
Thank you for your interest in our products!
Regards,
Dr. Michael J. Chudobiak
Chief Engineer
--- Avtech Electrosystems Ltd. ----------------------------
```


Marco Huber | Schulz-Electronic GmbH wrote:
> Dear Mary,
$>$
> a customer got an AVO-6A1-B with Option -S(diode socket mounting)
$>$
> Since the test diodes have a half finished, rough surface on the
$>$ connection wire the socket could be damaged soon.
> Therefore the customer ask for an adequate spare part which is cheap and
$>$ easy to change inside the socket.
> Please find the diode dimensions in the attachement.
$>$
> --> Could you offer us 5 pieces, if possible?
> Yours sincerely,
> Marco
$>$
> Marco Huber, Support
> Schulz-Electronic GmbH, Dr. Rudolf-Eberle-Str. 2, 76534 Baden-Baden
$>$ Tel.: +49 (0) 7223-96 36-48, Fax: +49 (0) 7223-96 36-90
> www.schulz-electronic.de

SPECIFICATIONS

Model:	AVO-6A1-B-OS-P-M-S-SCHA ${ }^{1}$
Amplitude ${ }^{2,3}$:	0 to +1 Amps
Pulse width (FWHM):	$50 \mathrm{~ns}-5$ us
Rise \& fall time (20\%-80\%)	$\leq 1 \mathrm{~ns}$
Maximum PRF:	10 kHz
Duty cycle (max):	5 \%
Polarity ${ }^{4}$:	Positive or negative or both (specify)
Output impedance:	50 Ohms
DC offset or bias insertion:	Optional ${ }^{5}$ Apply required DC bias current in the range of $\pm 100 \mathrm{~mA}$ to solder terminals on the output module.
Propagation delay:	$\leq 150 \mathrm{~ns}$ (Ext trig in to pulse out)
Jitter:	$\leq \pm 100 \mathrm{ps} \pm 0.03 \%$ of sync delay (Ext trig in to pulse out)
Trigger required:	External trigger mode: TTL-level pulse (LOW: 0V, HIGH: +3 to +5 V), 50 ns or wider
Sync delay:	0 to $\pm 1 \mathrm{sec}$
Sync output:	+ 3 Volts, 100 ns , will drive 50 Ohm loads
Gate input:	Synchronous or asynchronous, active high or low, switchable. Suppresses triggering when active.
Monitor output:	Optional ${ }^{6}$. Provides an attenuated coincident replica of output current.
GPIB and RS-232 control ${ }^{\text {2 }}$	Standard on -B units.
Telnet / Ethernet control:	Optional ${ }^{\text {. }}$ See http://www.avtechpulse.com/options/tnt for details.
Connectors:Out: Other:	Socket for Vishay TSFF5210 diode. BNC
Power requirements:	100-240 Volts, $50-60 \mathrm{~Hz}$
Dimensions: $(H \times W \times D)$	Mainframe: $100 \mathrm{~mm} \times 430 \mathrm{~mm} \times 375 \mathrm{~mm}$ ($3.9^{\prime \prime} \times 17^{\prime \prime} \times 14.8^{\prime \prime}$) $41 \mathrm{~mm} \times 66 \mathrm{~mm} \times 76 \mathrm{~mm}$ ($\left.1.6^{\prime \prime} \times 2.6^{\prime \prime} \times 3.0^{\prime \prime}\right)$
Chassis material:	Cast aluminum frame and handles, blue vinyl on aluminum cover plates
Mounting:	Any
Temperature range:	$+5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

1) -B suffix indicates IEEE-488.2 GPIB and RS-232 control of amplitude and frequency. See http://www.avtechpulse.com/gpib/ for details.
2) For operation at amplitudes of less than 20% of full-scale, best results will be obtained by setting the amplitude near full-scale and using external attenuators on the output (between the mainframe and the output module).
3) For analog electronic control (0 to +10 V) of amplitudet suffix model number with -EA. Electronic control units also include standard frontpanel controls.
4) Indicate desired polarity by suffixing model number with -P or -N (i.e. positive or negative) or -PN for dual polarity.
5) For DC offset option suffix model number with -OS. Not available for the model AVO-6C1-B.
6) For monitor option add suffix -M .
7) Add the suffix -TNT to the model number to specify the Telnet / Ethernet control option.
8) To specify diode socket mounting option, suffix model number width S . When ordering, customer must also specify the diode package type (e.g. TO-18) and the required pin connections (e.g. anode, cathode, ground, etc.). See AVX-S Series for readily available package mounting. Contact Avtech for special or different packages.

EUROPEAN REGULATORY NOTES

EC DECLARATION OF CONFORMITY

We Avtech Electrosystems Ltd.
P.O. Box 5120, LCD Merivale

Ottawa, Ontario
Canada K2C 3H4
declare that this pulse generator meets the intent of Directive 89/336/EEC for Electromagnetic Compatibility. Compliance pertains to the following specifications as listed in the official Journal of the European Communities:

EN 50081-1 Emission
EN 50082-1 Immunity
and that this pulse generator meets the intent of the Low Voltage Directive 72/23/EEC as amended by 93/68/EEC. Compliance pertains to the following specifications as listed in the official Journal of the European Communities:

EN 61010-1:2001 Safety requirements for electrical equipment for measurement, control, and laboratory use

DIRECTIVE 2002/95/EC (RoHS)

This instrument is exempt from Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the Restriction of the use of certain Hazardous Substances (RoHS) in electrical and electronic equipment. Specifically, Avtech instruments are considered "Monitoring and control instruments" (Category 9) as defined in Annex 1A of Directive 2002/96/EC. The Directive 2002/95/EC only applies to Directive 2002/96/EC categories 1-7 and 10, as stated in the "Article 2 - Scope" section of Directive 2002/95/EC.

DIRECTIVE 2002/96/EC (WEEE)

European customers who have purchased this equipment directly from Avtech will have completed a "WEEE Responsibility Agreement" form, accepting responsibility for WEEE
compliance (as mandated in Directive 2002/96/EC of the European Union and local laws) on behalf of the customer, as provided for under Article 9 of Directive 2002/96/EC.

Customers who have purchased Avtech equipment through local representatives should consult with the representative to determine who has responsibility for WEEE compliance. Normally, such responsibilities with lie with the representative, unless other arrangements (under Article 9) have been made.

Requirements for WEEE compliance may include registration of products with local governments, reporting of recycling activities to local governments, and financing of recycling activities.

INSTALLATION

VISUAL CHECK

After unpacking the instrument, examine to ensure that it has not been damaged in shipment. Visually inspect all connectors, knobs, liquid crystal displays (LCDs), and the handles. Confirm that a power cord, a GPIB cable, and two instrumentation manuals (this manual and the "Programming Manual for -B Instruments") are with the instrument. Confirm that an output module is supplied, with a length of coaxial cable to connect it to the mainframe. If the instrument has been damaged, file a claim immediately with the company that transported the instrument.

POWER RATINGS

This instrument is intended to operate from $100-240 \mathrm{~V}, 50-60 \mathrm{~Hz}$.
The maximum power consumption is 57 Watts. Please see the "FUSES" section for information about the appropriate AC and DC fuses.

This instrument is an "Installation Category II" instrument, intended for operation from a normal single-phase supply.

CONNECTION TO THE POWER SUPPLY

An IEC-320 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket. The other end of the detachable power cord plugs into the local mains supply. Use only the cable supplied with the instrument. The mains supply must be earthed, and the cord used to connect the instrument to the mains supply must provide an earth connection. (The supplied cord does this.)
\$ Warning: Failure to use a grounded outlet may result in injury or death due to electric shock. This product uses a power cord with a ground connection. It must be connected to a properly grounded outlet. The instrument chassis is connected to the ground wire in the power cord.

The table below describes the power cord that is normally supplied with this instrument, depending on the destination region:

Destination Region	Description	Manufacturer	Part Number
Continental Europe	European CEE 7/7 "Schuko" $230 \mathrm{~V}, 50 \mathrm{~Hz}$	Qualtek (http://www.qualtekusa.com)	$319004-\mathrm{T01}$
United Kingdom	BS 1363, $230 \mathrm{~V}, 50 \mathrm{~Hz}$	Qualtek (http://www.qualtekusa.com)	$370001-\mathrm{E} 01$
Switzerland	SEV 1011,2 $30 \mathrm{~V}, 50 \mathrm{~Hz}$	Volex (http://www.volex.com)	$2102 \mathrm{H}-\mathrm{C} 3-10$
Israel	SI 32, $220 \mathrm{~V}, 50 \mathrm{~Hz}$	Volex (http://www.volex.com)	$2115 \mathrm{H}-\mathrm{C} 3-10$
North America, and all other areas	NEMA 5-15, $120 \mathrm{~V}, 60 \mathrm{~Hz}$	Qualtek (http://www.qualtekusa.com)	$312007-01$

PROTECTION FROM ELECTRIC SHOCK

Operators of this instrument must be protected from electric shock at all times. The owner must ensure that operators are prevented access and/or are insulated from every connection point. In some cases, connections must be exposed to potential human contact. Operators must be trained to protect themselves from the risk of electric shock. This instrument is intended for use by qualified personnel who recognize shock hazards and are familiar with safety precautions required to avoid possibly injury. In particular, operators should:

1. Keep exposed high-voltage wiring to an absolute minimum.
2. Wherever possible, use shielded connectors and cabling.
3. Connect and disconnect loads and cables only when the instrument is turned off.
4. Keep in mind that all cables, connectors, oscilloscope probes, and loads must have an appropriate voltage rating.
5. Do not attempt any repairs on the instrument, beyond the fuse replacement procedures described in this manual. Contact Avtech technical support (see page 2 for contact information) if the instrument requires servicing. Service is to be performed solely by qualified service personnel.

ENVIRONMENTAL CONDITIONS

This instrument is intended for use under the following conditions:

1. indoor use;
2. altitude up to 2000 m ;
3. temperature $5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$;
4. maximum relative humidity 80% for temperatures up to $31^{\circ} \mathrm{C}$ decreasing linearly to 50% relative humidity at $40^{\circ} \mathrm{C}$;
5. Mains supply voltage fluctuations up to $\pm 10 \%$ of the nominal voltage;
6. no pollution or only dry, non-conductive pollution.

LABVIEW DRIVERS

A LabVIEW driver for this instrument is available for download on the Avtech web site, at http://www.avtechpulse.com/labview. A copy is also available in National Instruments' Instrument Driver Library at http://www.natinst.com/.

FUSES

This instrument contains four fuses. All are accessible from the rear-panel. Two protect the AC prime power input, and two protect the internal DC power supplies. The locations of the fuses on the rear panel are shown in the figure below:

AC FUSE REPLACEMENT

To physically access the AC fuses, the power cord must be detached from the rear panel of the instrument. The fuse drawer may then be extracted using a small flat-head screwdriver, as shown below:

DC FUSE REPLACEMENT

The DC fuses may be replaced by inserting the tip of a flat-head screwdriver into the fuse holder slot, and rotating the slot counter-clockwise. The fuse and its carrier will then pop out.

FUSE RATINGS

The following table lists the required fuses:

Fuses	Nominal Mains Voltage	Rating	Case Size	Recommended Replacement Part Littelfuse Part Number	
Digi-Key Stock Number					
\#1, \#2 (AC)	$100-240 \mathrm{~V}$	0.5A, 250V, Time-Delay	$5 \times 20 \mathrm{~mm}$	0218.500 HXP	F2416-ND
\#3 (DC)	N/A	1.6A, 250V, Time-Delay	$5 \times 20 \mathrm{~mm}$	021801.6 HXP	F2424-ND
\#4 (DC)	N/A	0.8A, 250V, Time-Delay	$5 \times 20 \mathrm{~mm}$	0218.800 HXP	F2418-ND

The recommended fuse manufacturer is Littelfuse (http://www.littelfuse.com).
Replacement fuses may be easily obtained from Digi-Key (http://www.digikey.com) and other distributors.

FRONT PANEL CONTROLS

1. POWER Switch. This is the main power switch. When turning the instrument on, there may be a delay of several seconds before the instrument appears to respond.
2. OVERLOAD Indicator. When the instrument is powered, this indicator is normally green, indicating normal operation. If this indicator is yellow, an internal automatic overload protection circuit has been tripped. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a very low impedance), the protective circuit will disable the output of the instrument and turn the indicator light yellow. The light will stay yellow (i.e. output disabled) for about 5 seconds after which the instrument will attempt to re-enable the output (i.e. light green) for about 1 second. If the overload condition persists, the output will be disabled again (i.e. light yellow) for another 5 seconds. If the overload condition has been removed, the instrument will resume normal operation.

This overload indicator may flash yellow briefly at start-up. This is not a cause for concern.
3. SYNC OUT. This connector supplies a SYNC output that can be used to trigger other equipment, particularly oscilloscopes. This signal leads (or lags) the main output by a duration set by the "DELAY" controls and has an approximate amplitude of +3 Volts to $R_{L}>1 \mathrm{k} \Omega$ with a pulse width of approximately 100 ns .
4. LIQUID CRYSTAL DISPLAY (LCD). This LCD is used in conjunction with the keypad to change the instrument settings. Normally, the main menu is displayed, which lists the key adjustable parameters and their current values. The "Programming Manual for -B Instruments" describes the menus and submenus in detail.
5. KEYPAD.

Control Name	Function
MOVE	This moves the arrow pointer on the display.
CHANGE	This is used to enter the submenu, or to select the operating mode, pointed to by the arrow pointer.
$\times 10$	If one of the adjustable numeric parameters is displayed, this increases the setting by a factor of ten.
$\div 10$	If one of the adjustable numeric parameters is displayed, this decreases the setting by a factor of ten.
$+/-$	If one of the adjustable numeric parameters is displayed, and this parameter can be both positive or negative, this changes the sign of the parameter.
EXTRA FINE	This changes the step size of the ADJUST knob. In the extra- fine mode, the step size is twenty times finer than in the normal mode. This button switches between the two step sizes.
	This large knob adjusts the value of any displayed numeric adjustable values, such as frequency, pulse width, etc. The adjust step size is set by the "EXTRA FINE" button. When the main menu is displayed, this knob can be used to move the arrow pointer.

REAR PANEL CONTROLS

1. AC POWER INPUT. An IEC-320 C14 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket.
2. AC FUSE DRAWER. The two fuses that protect the AC input are located in this drawer. Please see the "FUSES" section of this manual for more information.
3. DC FUSES. These two fuses protect the internal DC power supplies. Please see the "FUSES" sections of this manual for more information.
4. GATE. This TTL-level (0 and +5 V) logic input can be used to gate the triggering of the instrument. This input can be either active high or active low, depending on the front panel settings or programming commands. (The instrument triggers normally when this input is unconnected). When set to active high mode, this input is pulleddown to ground by a $1 \mathrm{k} \Omega$ resistor. When set to active low mode, this input is pulledup to +5 V by a $1 \mathrm{k} \Omega$ resistor.
5. TRIG. This TTL-level (0 and +5 V) logic input can be used to trigger the instrument, if the instrument is set to triggering externally. The instrument triggers on the rising edge of this input. The input impedance of this input is $1 \mathrm{k} \Omega$. (Depending on the length of cable attached to this input, and the source driving it, it may be desirable to add a coaxial 50 Ohm terminator to this input to provide a proper transmission line termination. The Pasternack (www.pasternack.com) PE6008-50 BNC feed-thru 50 Ohm terminator is suggested for this purpose.)

When triggering externally, the instrument can be set such that the output pulse width tracks the pulse width on this input, or the output pulse width can be set
independently.
6. GPIB Connector. A standard GPIB cable can be attached to this connector to allow the instrument to be computer-controlled. See the "Programming Manual for -B Instruments" for more details on GPIB control.
7. RS-232 Connector. A standard serial cable with a 25-pin male connector can be attached to this connector to allow the instrument to be computer-controlled. See the "Programming Manual for -B Instruments" for more details on RS-232 control.
8. OUT CONNECTOR. This SMA connector is connected to the output module, when the output module is used to drive a diode load. If the output module is not used, this output will generate up to 50 V into a load impedance of 50Ω.
\$ Caution: Voltages as high as $\pm 50 \mathrm{~V}$ may be present on the center conductor of this output connector. Avoid touching this conductor. Connect to this connector using standard coaxial cable, to ensure that the center conductor is not exposed.
9. MONITOR Connector. An attenuated ($\div 10.5$, approximately) replica of the output signal on the OUT connector (item 8) is provided on this monitor connector. When used, this output must be terminated with 50 Ohms.
10. OS Connector. The desired DC offset is applied to this connector. Internally, it is connected to the output centre conductor via a high quality RF inductor. Do not exceed 100 mA . When not used, the OS input should be connected to the adjacent ground terminal.

GENERAL INFORMATION

AMPLITUDE CONTROL

The AVO-6A1-B-OS-P-M-S-SCHA consists of two parts, the mainframe and the output module. The mainframe is a voltage pulser, which generates 0 to +50 V (assuming that the model is a "-P" positive unit, or a dual-polarity model operating in the positive mode). The output module contains a 50Ω series resistance. The diode load is connected in series with this resistance, so that the current through the diode is normally given by:

$$
I_{\text {DIODE }}=\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {DIIDE }}\right) / 50 \Omega
$$

where $\mathrm{V}_{\text {DIODE }}$ is the voltage drop across the diode.
The output module contains a socket suitable for use with the Vishay TSFF5210 diode.

LENZ'S LAW AND INDUCTIVE VOLTAGE SPIKES

This instrument is designed to pulse resistive and diode loads and will exhibit a large output spike when used to drive a load with significant inductance (as predicted by LENZ'S LAW). For this reason the load should be connected to the output using low inductance leads (as short as possible).

The voltage developed across an inductance L (in Henries), when the current is changing at a rate given by $\mathrm{dl}_{\text {LOAD }} / \mathrm{dt}$ (in $\mathrm{Amps} / \mathrm{sec}$), is: $\mathrm{V}_{\text {SPIKE }}=\mathrm{L} \mathrm{dl}_{\text {LOAD }} / \mathrm{dt}$.

BASIC TEST ARRANGEMENT - WITHOUT OUTPUT MODULE

The AVO-6A1-B-OS-P-M-S-SCHA can be tested initially without the supplied output module. If the output module is not used, the mainframe output generates 0 to +50 Volts into a 50 Ohm load, as illustrated below:

ALL CABLES: 50 OHM COAXIAL
The load resistor must have a voltage rating of at least 50 V , and a power rating of at least 2.5 Watts. It must also be low-inductance, or the waveform will become distorted and exhibit noticeable ringing.

BASIC TEST ARRANGEMENT - WITH OUTPUT MODULE

To fully test the instrument, and for normal operation, the output module must be connected as shown below:

The output module has a socket suitable for the Vishay TSFF5210 diode. The anode and cathode pins of the diode must be oriented as shown above. The device should be inserted as far as possible into the socket, to minimize parasitic inductance.

The socket is an Amp 535676-1 socket. It may be replaced if required. It is soldered to the output circuit board in four places, shown as black dots in the figure above.

If the OS terminal is not used, it should be connected to the adjacent ground terminal. The output signal may degrade if this is not done.

BASIC PULSE CONTROL

This instrument can be triggered by its own internal clock or by an external TTL trigger signal. In either case, two output channels respond to the trigger: OUT and SYNC. The OUT channel is the signal that is applied to the load. Its amplitude and pulse width are variable. The SYNC pulse is a fixed-width TTL-level reference pulse used to trigger oscilloscopes or other measurement systems. When the delay is set to a positive value the SYNC pulse precedes the OUT pulse. When the delay is set to a negative value the SYNC pulse follows the OUT pulse.

These pulses are illustrated below, assuming internal triggering and a positive delay:

Figure A

If the delay is negative, the order of the SYNC and OUT pulses is reversed:

Figure B

The next figure illustrates the relationship between the signal when an external TTLlevel trigger is used:

Figure C

As before, if the delay is negative, the order of the SYNC and OUT pulses is reversed.
The delay, pulse width, and frequency (when in the internal mode), of the OUT pulse can be varied with front panel controls or via the GPIB or RS-232 computer interfaces.

TRIGGER MODES

This instrument has four trigger modes:

- Internal Trigger: the instrument controls the trigger frequency, and generates the clock internally.
- External Trigger: the instrument is triggered by an external TTL-level clock on the back-panel TRIG connector.
- Manual Trigger: the instrument is triggered by the front-panel "SINGLE PULSE" pushbutton.
- Hold Trigger: the instrument is set to not trigger at all.

These modes can be selected using the front panel trigger menu, or by using the appropriate programming commands. (See the "Programming Manual for -B Instruments" for more details.)

GATING MODES

Triggering can be suppressed by a TTL-level signal on the rear-panel GATE connector. The instrument can be set to stop triggering when this input high or low, using the frontpanel gate menu or the appropriate programming commands. This input can also be set to act synchronously or asynchronously. When set to asynchronous mode, the GATE will disable the output immediately. Output pulses may be truncated. When set to synchronous mode, the output will complete the full pulse width if the output is high, and then stop triggering. No pulses are truncated in this mode.

OPERATIONAL CHECK

This section describes a sequence to confirm the basic operation of the instrument. It should be performed after receiving the instrument. It is a useful learning exercise as well.

Before proceeding with this procedure, finish read this instruction manual thoroughly. Then read the "Local Control" section of the "Programming Manual for -B Instruments" thoroughly. The "Local Control" section describes the front panel controls used in this operational check - in particular, the MOVE, CHANGE, and ADJUST controls.

For the first test, the output module is not used.

1. Connect a cable from the SYNC OUT connector to the TRIG input of an oscilloscope. Connect a 2.5 W (or higher) 50Ω load to the OUT connector on the rear panel of the mainframe and place the scope probe across this load. Set the oscilloscope to trigger externally.

ALL CABLES: 50 OHM COAXIAL
2.Turn on the AVO-6A1-B-OS-P-M-S-SCHA. The main menu will appear on the LCD.
3. To set the AVO-6A1-B-OS-P-M-S-SCHA to trigger from the internal clock at a PRF of 1 kHz :
a)The arrow pointer should be pointing at the frequency menu item. If it is not, press the MOVE button until it is.
b)Press the CHANGE button. The frequency submenu will appear. Rotate the ADJUST knob until the frequency is set at 1 kHz .
c) The arrow pointer should be pointing at the "Internal" choice. If it is not, press MOVE until it is.
d) Press CHANGE to return to the main menu.
4. To set the delay to 1 us:
a)Press the MOVE button until the arrow pointer is pointing at the delay menu item.
b)Press the CHANGE button. The delay submenu will appear. Rotate the ADJUST knob until the delay is set at 1 us.
c) The arrow pointer should be pointing at the "Normal" choice. If it is not, press MOVE until it is.
d) Press CHANGE to return to the main menu.
5. To set the pulse width to 1 us:
a)Press the MOVE button until the arrow pointer is pointing at the pulse width menu item.
b)Press the CHANGE button. The pulse width submenu will appear. Rotate the ADJUST knob until the pulse width is set at 1 us.
c) Press CHANGE to return to the main menu.
6. At this point, nothing should appear on the oscilloscope.
7. To enable the output:
a)Press the MOVE button until the arrow pointer is pointing at the output menu item.
b)Press the CHANGE button. The output submenu will appear.
c) Press MOVE until the arrow pointer is pointing at the "ON" choice.
d)Press CHANGE to return to the main menu.
8. To change the output amplitude:
a)Press the MOVE button until the arrow pointer is pointing at the amplitude menu item.
b)Press the CHANGE button. The amplitude submenu will appear. Rotate the ADJUST knob until the amplitude is set at 50 V .
c) Observe the oscilloscope. You should see 1 us wide, 50V pulses.
d)Rotate the ADJUST knob. The amplitude as seen on the oscilloscope should vary.
e)Press CHANGE to return to the main menu.
9. Repeat the last step, but set the amplitude to zero.
10.This completes the first operational check test.

PROGRAMMING YOUR PULSE GENERATOR

KEY PROGRAMMING COMMANDS

The "Programming Manual for -B Instruments" describes in detail how to connect the pulse generator to your computer, and the programming commands themselves. A large number of commands are available; however, normally you will only need a few of these. Here is a basic sample sequence of commands that might be sent to the instrument after power-up:

*rst	(resets the instrument)
trigger:source internal	(selects internal triggering)
frequency 1000 Hz	(sets the frequency to 1000 Hz)
pulse:width 1 us	(sets the pulse width to 1 us)
pulse:delay 2 us	(sets the delay to 2 us)
volt 40	(sets the amplitude to 40 V)
output on	(turns on the output)

For triggering a single event, this sequence would be more appropriate:

*rst	(resets the instrument)
trigger:source hold	(turns off all triggering)
pulse:width 1 us	(sets the pulse width to 1 us)
output on	(turns on the output)
volt 40	(sets the amplitude to 40 V)
trigger:source immediate	(generates a single non-repetitive trigger event)
trigger:source hold	(turns off all triggering)
output off	(turns off the output)

To set the instrument to trigger from an external TTL input:

*rst	(resets the instrument) trigger:source external (selects external triggering)
pulse:width 1 us	(sets the pulse width to 1 us)
pulse:delay 2 us	(sets the delay to 2 us)
volt 40	(sets the amplitude to 40 V)
output on	(turns on the output)

These commands will satisfy 90% of your programming needs.

ALL PROGRAMMING COMMANDS

For more advanced programmers, a complete list of the available commands is given below. These commands are described in detail in the "Programming Manual for -B Instruments". (Note: this manual also includes some commands that are not implemented in this instrument. They can be ignored.)

Keyword	Parameter	Notes	
LOCAL			
OUTPut:			
:[STATe]	<boolean value>		
:PROTection			
:TRIPped?		[query only]	
REMOTE [SOURce]:			
:FREQuency			
[:CW \| FIXed]	<numeric value>		
[SOURce]:			
:PULSe			
:PERiod	<numeric value>		
:WIDTh	<numeric value>		
:DCYCle	<numeric value>		
:HOLD	WIDTh \| DCYCle		
:DELay	<numeric value>		
:GATE			
:TYPE	ASYNCISYNC		
:LEVel	HIgh \| LOw		
[SOURce]:			
:VOLTage [:LEVel]			
[:LEVel]			
[:IMMediate]			
[:AMPLitude]	<numeric value> \|	ernal	
:PROTection			
:TRIPped?		[query only]	
STATUS:			
:OPERation			
:[EVENt]?		[query only, always returns "0"]	
:CONDition?		[query only, always returns "0"]	
:ENABle	<numeric value>	[implemented but not useful]	
:QUEStionable			
:[EVENt]?		[query only, always returns "0"]	
:CONDition?		[query only, always returns "0"]	
:ENABle	<numeric value>	[implemented but not useful]	
SYSTem:			
:COMMunicate			
:GPIB			
:ADDRess	<numeric value>		
:SERial			
:CONTrol			
:RTS	ON \| IBFull	RFR	
:[RECeive]			
:BAUD	1200\|2400	4800	
:BITS	7\|8		
:ECHO	<boolean value>		
:PARity			

| :[TYPE]
 :SBITS | EVEN \| ODD | NONE 1|2 | |
| :---: | :---: | :---: |
| :ERRor | | |
| :[NEXT]? | | [query only] |
| :COUNT? | | [query only] |
| :VERSion? | | [query only] |
| TRIGger: | | |
| :SOURce | INTernal \| EXTernal | | MANual \| HOLD | IMMediate |
| *CLS | | [no query form] |
| *ESE | <numeric value> | |
| *ESR? | | [query only] |
| *IDN? | | [query only] |
| *OPC | | |
| *SAV | 0\|1|2|3 | [no query form] |
| *RCL | 0\|1|2|3 | [no query form] |
| *RST | | [no query form] |
| *SRE | <numeric value> | |
| *STB? | | [query only] |
| *TST? | | [query only] |
| *WAI | | [no query form] |

MECHANICAL INFORMATION

TOP COVER REMOVAL

If necessary, the interior of the instrument may be accessed by removing the four Phillips screws on the top panel. With the four screws removed, the top cover may be slid back (and off).

Always disconnect the power cord and allow the instrument to sit unpowered for 10 minutes before opening the instrument. This will allow any internal stored charge to discharge.

There are no user-adjustable internal circuits. For repairs other than fuse replacement, please contact Avtech (info@avtechpulse.com) to arrange for the instrument to be returned to the factory for repair. Service is to be performed solely by qualified service personnel.

食 Caution: High voltages are present inside the instrument during normal operation. Do not operate the instrument with the cover removed.

RACK MOUNTING

A rack mounting kit is available. The -R5 rack mount kit may be installed after first removing the one Phillips screw on the side panel adjacent to the front handle.

ELECTROMAGNETIC INTERFERENCE

To prevent electromagnetic interference with other equipment, all used outputs should be connected to shielded loads using shielded coaxial cables. Unused outputs should be terminated with shielded coaxial terminators or with shielded coaxial dust caps, to prevent unintentional electromagnetic radiation. All cords and cables should be less than $3 m$ in length.

MAINTENANCE

REGULAR MAINTENANCE

This instrument does not require any regular maintenance.
On occasion, one or more of the four rear-panel fuses may require replacement. All fuses can be accessed from the rear panel. See the "FUSES" section for details.

CLEANING

If desired, the interior of the instrument may be cleaned using compressed air to dislodge any accumulated dust. (See the "TOP COVER REMOVAL" section for instructions on accessing the interior.) No other cleaning is recommended.

WIRING DIAGRAMS

PCB 158K - LOW VOLTAGE DC POWER SUPPLY, 1/3

PCB 158K - LOW VOLTAGE DC POWER SUPPLY, 2/3

PCB 158K - LOW VOLTAGE DC POWER SUPPLY, 3/3

PCB 168B - HIGH VOLTAGE DC POWER SUPPLY

PCB 104D - KEYPAD / DISPLAY BOARD, 1/3

PCB 104D - KEYPAD / DISPLAY BOARD, 2/3

PCB 104D - KEYPAD / DISPLAY BOARD, 3/3

MAIN WIRING

PERFORMANCE CHECK SHEET

