

AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS SINCE 1975

P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: (315) 472-5270 FAX: (613) 226-2802 TEL: 1-800-265-6681 FAX: 1-800-561-1970

e-mail: info@avtechpulse.com http://www.avtechpulse.com/ BOX 5120, LCD MERIVALE OTTAWA, ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772 FAX: (613) 226-2802

INSTRUCTIONS

MODEL AVPP-1-B-P-COB

0 TO +10 VOLTS, 1 MHz HIGH PERFORMANCE PULSE GENERATOR WITH IEEE 488.2 AND RS-232 CONTROL

SERIAL NUMBER: _____

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

TECHNICAL SUPPORT

Phone: 613-226-5772 or 1-800-265-6681 Fax: 613-226-2802 or 1-800-561-1970

E-mail: info@avtechpulse.com World Wide Web: http://www.avtechpulse.com

TABLE OF CONTENTS

WARRANTY	2
TECHNICAL SUPPORT	2
TABLE OF CONTENTS	3
INTRODUCTION	5
SPECIFICATIONS	6
ORIGINAL QUOTATION	<i>7</i>
EC DECLARATION OF CONFORMITY	9
INSTALLATION	10
VISUAL CHECK	10
POWER RATINGS	
CONNECTION TO THE POWER SUPPLY	10
ENVIRONMENTAL CONDITIONS	10
LABVIEW DRIVERS	11
FUSES	12
AC FUSE REPLACEMENT	12
DC FUSE REPLACEMENT	13
FUSE RATINGS	13
FRONT PANEL CONTROLS	14
REAR PANEL CONTROLS	16
GENERAL INFORMATION	18
BASIC PULSE CONTROL	18
TRIGGER MODES	19
GATING MODES	
OPERATION AT LOW AMPLITUDES	20
TOP COVER REMOVAL	
ELECTROMAGNETIC INTERFERENCE	
PROTECTING YOUR INSTRUMENT	21
TURN OFF INSTRUMENT WHEN NOT IN USE	
DO NOT EXCEED 1 MHz	
USE A 50 OHM LOAD	
OPERATIONAL CHECK	
PROGRAMMING YOUR PULSE GENERATOR	26

KEY PROGRAMMING COMMANDS	20
ALL PROGRAMMING COMMANDS	27
PERFORMANCE CHECKSHEET	

Manual Reference: /fileserver1/officefiles/instructword/avpp/obsolete versions/AVPP-1-B-P-COB,edition1.sxw. Last modified February 29, 2024.
Copyright © 2004 Avtech Electrosystems Ltd, All Rights Reserved.

INTRODUCTION

The AVPP-1-B-P-COB is a high performance, GPIB and RS232-equipped instrument capable of generating +10V into 50Ω loads at repetition rates up to 1 MHz. The output pulse width is variable from 1 ns to 1 us. The maximum duty cycle is 5%. The rise time is 300 ps or less, and the fall time is 400 ps or less.

The AVPP-1-B-P-COB is a highly flexible instrument. Aside from the internal trigger source, it can also be triggered or gated by external TTL-level signals. A front-panel pushbutton or a computer command can also be used to trigger the instrument.

The AVPP-1-B-P-COB features front panel keyboard and adjust knob control of the output pulse parameters along with a four line by 40-character backlit LCD display of the output amplitude, pulse width, pulse repetition frequency, and delay. The instrument includes memory to store up to four complete instrument setups. The operator may use the front panel or the computer interface to store a complete "snapshot" of all key instrument settings, and recall this setup at a later time.

This instrument is intended for use in research and development laboratories.

SPECIFICATIONS

Model:	AVPP-1-B-P-COB		
Amplitude: (50 Ohm load)	Variable to +10 Volts		
Pulse width:	Variable 1 ns to 1 us		
PRF: external trigger mode:	0 to 1 MHz		
internal trigger:	1 Hz to 1 MHz		
Maximum duty cycle:	5%		
Rise time:	≤ 300ps		
Fall time:	≤ 400ps		
GPIB and RS-232 control:	Standard on -B units.		
LabView Drivers:	Check http://www.avtechpulse.com/labview for availability and downloads		
Propagation delay:	≤ 100 ns (Ext trig in to pulse out)		
Jitter:	±35ps ±0.015% of sync delay		
DC offset or bias insertion:	Apply required DC offset to back panel solder terminals (± 50 Volts, 250 mA max)		
Trigger required:	Ext trig mode: +5 Volts, 10 ns or wider (TTL)		
Sync delay:	Sync out to pulse out: Variable 0 to 200 ns		
Sync output:	+3 Volts, 100 ns, will drive 50 Ohm loads		
Connectors:	Out: SMA, Trig: BNC, Sync: BNC, Gate: BNC, Monitor: SMA		
Power requirements:	100-240 Volts, 50-60 Hz		
Dimensions: (H x W x D)	100 mm x 430 mm x 375 mm (3.9" x 17" x 14.8")		
Chassis material:	cast aluminum frame & handles, blue vinyl on aluminum cover plates		
Mounting, temperature range:	Any, +10°C to +40°C		

ORIGINAL QUOTATION

October 28, 2003
To: Wyn Robertson
Advanced Research Unit
Coherent Inc,
Santa Clara, CA, 95054
408-764-4736
e-mail: Wyn.Robertson@coherentinc.com

Wyn,

Following your recent inquiry, I am pleased to re-quote as follows:

Quote number: 11799

Model number: AVPP-1-B-P-COB

Description: Ultra High Speed Pulse Generator

Amplitude: 0 to +10V into 50 Ohms (i.e., 200 mA maximum)

Polarity: positive

Pulse width (FWHM): 1 ns to 1 us, variable. (Please note the 5% duty cycle limit, however.)

Rise time (20%-80%): < 300 ps Fall time (80%-20%): < 400 ps

Pulse repetition frequency: 1 MHz maximum

Duty cycle: 5% maximum

Other: as per the standard AVPP-1-B-P. See http://www.avtechpulse.com/speed/avpp-1 for details.

Price: \$9798 US each, FOB destination.

Delivery: 60-90 days after receipt of order (excluding export permit* delays).

*Export Permit: This instrument is a very high performance pulse generator, which is considered to be "Nuclear-Related Dual-Use Goods" under government regulations. As such, an "End Use Statement" must be completed when ordering. The necessary form is attached (in Microsoft Word format). We will use the information in the completed form to apply for an export license from the Canadian government, which will take 1 to 6 weeks to obtain. We cannot ship your order without the license. Please return the completed form to us by fax.

Please call or email me if I can be of further assistance.

Regards,

Dr. Michael J. Chudobiak VP, New Product Development

--- Avtech Electrosystems Ltd. ------ since 1975 ---

PO Box 265 ph: 1-800-265-6681 or 613-226-5772 Box 5120 Stn. F Ogdensburg, NY fax: 1-800-561-1970 or 613-226-2802 Ottawa, Ontario USA 13669-0265 email: info@avtechpulse.com Canada K2C 3H4 http://www.avtechpulse.com/

Nanosecond Waveform Generators for general purpose, R&D and OEM applications

Pulse Generators - Laser Diode Drivers - Pulse Amplifiers
Impulse Generators - Current Pulsers - Delay Generators - Splitters
Function Generators - Monocycle Generators - Frequency Dividers + more!

EC DECLARATION OF CONFORMITY

We

Avtech Electrosystems Ltd. P.O. Box 5120, LCD Merivale Ottawa, Ontario Canada K2C 3H4

declare that this pulse generator meets the intent of Directive 89/336/EEC for Electromagnetic Compatibility. Compliance pertains to the following specifications as listed in the official Journal of the European Communities:

EN 50081-1 Emission

EN 50082-1 Immunity

and that this pulse generator meets the intent of the Low Voltage Directive 72/23/EEC as amended by 93/68/EEC. Compliance pertains to the following specifications as listed in the official Journal of the European Communities:

EN 61010-1:2001 Safety requirements for electrical equipment for measurement, control, and laboratory use

INSTALLATION

VISUAL CHECK

After unpacking the instrument, examine to ensure that it has not been damaged in shipment. Visually inspect all connectors, knobs, liquid crystal displays (LCDs), and the handles. Confirm that a power cord, a GPIB cable, and two instrumentation manuals (this manual and the "Programming Manual for -B Instruments") are with the instrument. If the instrument has been damaged, file a claim immediately with the company that transported the instrument.

POWER RATINGS

This instrument is intended to operate from 100 - 240 V, 50 - 60 Hz.

The maximum power consumption is 57 Watts. Please see the "FUSES" section for information about the appropriate AC and DC fuses.

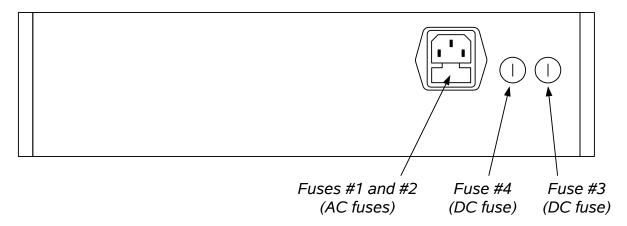
This instrument is an "Installation Category II" instrument, intended for operation from a normal single-phase supply.

CONNECTION TO THE POWER SUPPLY

An IEC-320 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket. The other end of the detachable power cord plugs into the local mains supply. Use only the cable supplied with the instrument. The mains supply must be earthed, and the cable used to connect the instrument to the mains supply must provide an earth connection. (The supplied cable does this.)

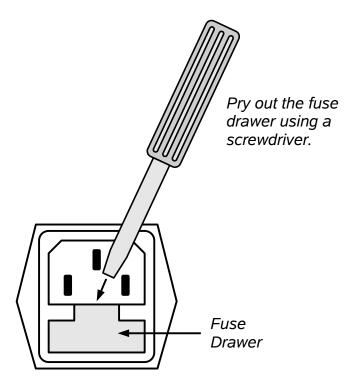
ENVIRONMENTAL CONDITIONS

This instrument is intended for use under the following conditions:


- 1. indoor use:
- 2. altitude up to 2 000 m;
- 3. temperature 5 °C to 40 °C;
- 4. maximum relative humidity 80 % for temperatures up to 31 °C decreasing linearly to 50 % relative humidity at 40 °C;
- 5. Mains supply voltage fluctuations up to ±10 % of the nominal voltage;
- 6. no pollution or only dry, non-conductive pollution.

LABVIEW DRIVERS

A LabVIEW driver for this instrument is available for download on the Avtech web site, at http://www.avtechpulse.com/labview. A copy is also available in National Instruments' Instrument Driver Library at http://www.natinst.com/.


FUSES

This instrument contains four fuses. All are accessible from the rear-panel. Two protect the AC prime power input, and two protect the internal DC power supplies. The locations of the fuses on the rear panel are shown in the figure below:

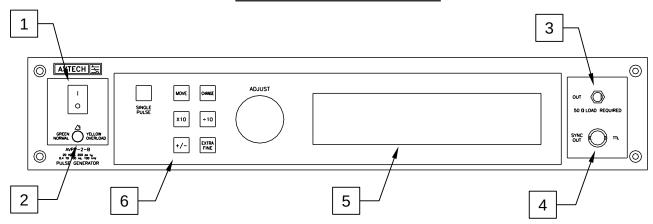
AC FUSE REPLACEMENT

To physically access the AC fuses, the power cord must be detached from the rear panel of the instrument. The fuse drawer may then be extracted using a small flat-head screwdriver, as shown below:

DC FUSE REPLACEMENT

The DC fuses may be replaced by inserting the tip of a flat-head screwdriver into the fuse holder slot, and rotating the slot counter-clockwise. The fuse and its carrier will then pop out.

FUSE RATINGS


The following table lists the required fuses:

Fuses	Nominal Mains Voltage	Rating	Case Size	Manufacturer's Part Number (Wickmann)	Distributor's Part Number (Digi-Key)
#1, #2 (AC)	100-240V	0.5A, 250V, Time-Delay	5×20 mm	1950500000	WK5041-ND
#3 (DC)	N/A	1.0A, 250V, Time-Delay	5×20 mm	1951100000	WK5048-ND
#4 (DC)	N/A	Not used. A spare 1.0A fuse is installed here.			

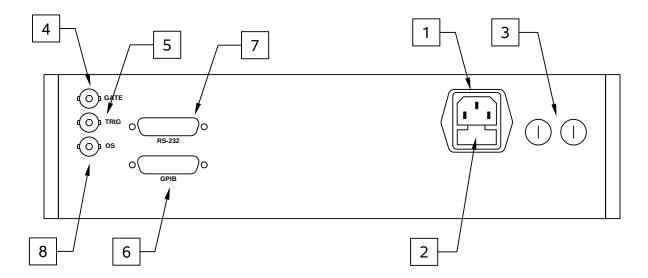
The fuse manufacturer is Wickmann (http://www.wickmann.com/).

Replacement fuses may be easily obtained from Digi-Key (http://www.digikey.com/) and other distributors.

FRONT PANEL CONTROLS

- 1. <u>POWER Switch</u>. This is the main power switch. When turning the instrument on, there may be a delay of several seconds before the instrument appears to respond.
- 2. OVERLOAD Indicator. When the instrument is powered, this indicator is normally green, indicating normal operation. If this indicator is yellow, an internal automatic overload protection circuit has been tripped. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a very low impedance), the protective circuit will disable the output of the instrument and turn the indicator light yellow. The light will stay yellow (i.e. output disabled) for about 5 seconds after which the instrument will attempt to re-enable the output (i.e. light green) for about 1 second. If the overload condition persists, the output will be disabled again (i.e. light yellow) for another 5 seconds. If the overload condition has been removed, the instrument will resume normal operation.

This overload indicator may flash yellow briefly at start-up. This is not a cause for concern.


Note that the output stage will safely withstand a short-circuited load condition.

- 3. <u>OUT CONNECTOR</u>. This SMA connector provides the main output signal, into load impedances of 50 Ohms.
- 4. <u>SYNC OUT</u>. This connector supplies a SYNC output that can be used to trigger other equipment, particularly oscilloscopes. This signal leads (or lags) the main output by a duration set by the "DELAY" controls and has an approximate amplitude of +3 Volts to $R_L > 1 \text{ k}\Omega$ with a pulse width of approximately 100 ns.
- 5. <u>LIQUID CRYSTAL DISPLAY (LCD)</u>. This LCD is used in conjunction with the keypad to change the instrument settings. Normally, the main menu is displayed, which lists the key adjustable parameters and their current values. The "Programming Manual for -B Instruments" describes the menus and submenus in detail.

6. <u>KEYPAD</u>.

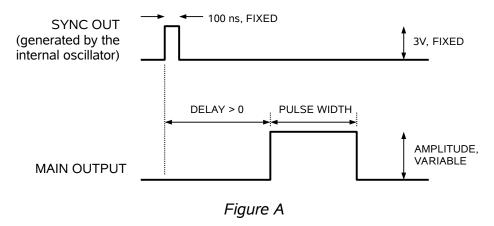
Control Name	Function
MOVE	This moves the arrow pointer on the display.
CHANGE	This is used to enter the submenu, or to select the operating
	mode, pointed to by the arrow pointer.
×10	If one of the adjustable numeric parameters is displayed, this
	increases the setting by a factor of ten.
÷10	If one of the adjustable numeric parameters is displayed, this
	decreases the setting by a factor of ten.
+/-	If one of the adjustable numeric parameters is displayed, and
	this parameter can be both positive or negative, this changes the
	sign of the parameter.
EXTRA FINE	This changes the step size of the ADJUST knob. In the extra-
	fine mode, the step size is twenty times finer than in the normal
	mode. This button switches between the two step sizes.
ADJUST	This large knob adjusts the value of any displayed numeric
	adjustable values, such as frequency, pulse width, etc. The
	adjust step size is set by the "EXTRA FINE" button.
	When the main menu is displayed, this knob can be used to
	move the arrow pointer.

REAR PANEL CONTROLS

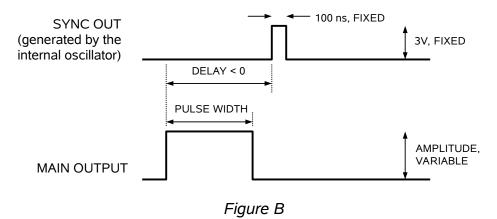
- AC POWER INPUT. An IEC-320 C14 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket.
- 2. <u>AC FUSE DRAWER</u>. The two fuses that protect the AC input are located in this drawer. Please see the "FUSES" section of this manual for more information.
- 3. <u>DC FUSES</u>. These two fuses protect the internal DC power supplies. Please see the "FUSES" sections of this manual for more information.
- 4. <u>GATE</u>. This TTL-level (0 and +5V) logic input can be used to gate the triggering of the instrument. This input can be either active high or active low, depending on the front panel settings or programming commands. (The instrument triggers normally when this input is unconnected). When set to active high mode, this input is pulled-down to ground by a 1 k Ω resistor. When set to active low mode, this input is pulled-up to +5V by a 1 k Ω resistor.
- 5. TRIG. This TTL-level (0 and +5V) logic input can be used to trigger the instrument, if the instrument is set to triggering externally. The instrument triggers on the rising edge of this input. The input impedance of this input is $1 \text{ k}\Omega$. (Depending on the length of cable attached to this input, and the source driving it, it may be desirable to add a coaxial 50 Ohm terminator to this input to provide a proper transmission line termination. The Pasternack (www.pasternack.com) PE6008-50 BNC feed-thru 50 Ohm terminator is suggested for this purpose.)

When triggering externally, the instrument can be set such that the output pulse width tracks the pulse width on this input, or the output pulse width can be set independently.

- 6. <u>GPIB Connector</u>. A standard GPIB cable can be attached to this connector to allow the instrument to be computer-controlled. See the "Programming Manual for -B Instruments" for more details on GPIB control.
- 7. <u>RS-232 Connector.</u> A standard serial cable with a 25-pin male connector can be attached to this connector to allow the instrument to be computer-controlled. See the "Programming Manual for -B Instruments" for more details on RS-232 control.
- 8. <u>OS Connector</u>. The desired DC offset is applied to this connector. Internally, it is connected to the output centre conductor via a high quality RF inductor. Do not exceed ±50V, 250 mA. If this input is not used, it should be connected to ground (zero Volts).


GENERAL INFORMATION

BASIC PULSE CONTROL


This instrument can be triggered by its own internal clock or by an external TTL trigger signal. In either case, two output channels respond to the trigger: OUT and SYNC.

- OUT. This is the main output.
- SYNC. The SYNC pulse is a fixed-width TTL-level reference pulse used to trigger oscilloscopes or other measurement systems. When the delay is set to a positive value the SYNC pulse precedes the OUT pulse. When the delay is set to a negative value the SYNC pulse follows the OUT pulse.


These pulses are illustrated below, assuming internal triggering and a positive delay:

If the delay is negative, the order of the SYNC and OUT pulses is reversed:

The next figure illustrates the relationship between the signal when an external TTL-level trigger is used:

As before, if the delay is negative, the order of the SYNC and OUT pulses is reversed.

In general, the delay, pulse width, and frequency (when in the internal mode), of the OUT pulse can be varied with front panel controls or via the GPIB or RS-232 computer interfaces.

TRIGGER MODES

This instrument has four trigger modes:

- Internal Trigger: the instrument controls the trigger frequency, and generates the clock internally.
- External Trigger: the instrument is triggered by an external TTL-level clock on the back-panel TRIG connector.
- Manual Trigger: the instrument is triggered by the front-panel "SINGLE PULSE" pushbutton.
- Hold Trigger: the instrument is set to not trigger at all.

These modes can be selected using the front panel trigger menu, or by using the appropriate programming commands. (See the "Programming Manual for -B Instruments" for more details.)

GATING MODES

Triggering can be suppressed by a TTL-level signal on the rear-panel GATE connector. The instrument can be set to stop triggering when this input high or low, using the front-panel gate menu or the appropriate programming commands. When gated, the output will complete the full pulse width if the output is high, and then stop triggering. Pulses are not truncated.

OPERATION AT LOW AMPLITUDES

This instrument will generate the best waveforms when operated near maximum amplitude. If amplitudes less than 1/3 of the full-scale value are desired, better results will be obtained if the pulse generator is operated at a higher amplitude, and an attenuator is connected to the output. Avtech recommends the ATT-0444-XX-SMA-02 series of 18 GHz coaxial attenuators from Midwest Microwave, http://www.midwestmicrowave.com/. (The "XX" in the part number is replaced with the numeric attenuation value in dB).

TOP COVER REMOVAL

The interior of the instrument may be accessed by removing the four Phillips screws on the top panel. With the four screws removed, the top cover may be slid back (and off).

ELECTROMAGNETIC INTERFERENCE

To prevent electromagnetic interference with other equipment, all used outputs should be connected to shielded 50Ω loads using shielded 50Ω coaxial cables. Unused outputs should be terminated with shielded 50Ω coaxial terminators or with shielded coaxial dust caps, to prevent unintentional electromagnetic radiation. All cords and cables should be less than 3m in length.

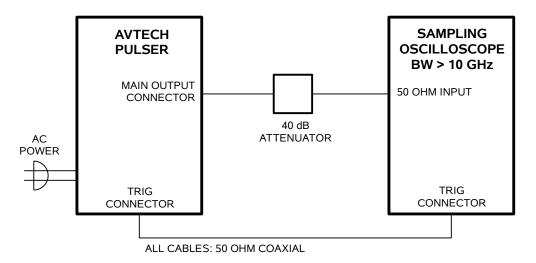
PROTECTING YOUR INSTRUMENT

TURN OFF INSTRUMENT WHEN NOT IN USE

The lifetime of the switching elements in the pulse generator module is proportional to the running time of the instrument. For this reason the prime power to the instrument should be turned off when the instrument is not in use. In the case of failure, the switching elements are easily replaced following the procedure described in a following section.

DO NOT EXCEED 1 MHz

The output stage may be damaged if triggered by an external signal at a pulse repetition frequency greater than 1 MHz.


USE A 50 OHM LOAD

The output stage may be damaged if the output is not terminated into a 50Ω load.

OPERATIONAL CHECK

This section describes a sequence to confirm the basic operation of the instrument. It should be performed after receiving the instrument. It is a useful learning exercise as well.

Before proceeding with this procedure, finish reading this instruction manual thoroughly. Then read the "Local Control" section of the "Programming Manual for -B Instruments" thoroughly. The "Local Control" section describes the front panel controls used in this operational check - in particular, the MOVE, CHANGE, and ADJUST controls.

BASIC TEST ARRANGEMENT

- 1. Connect the pulse generator to a sampling oscilloscope as shown above. Note that:
 - a) The use of 40 dB attenuator at the sampling scope vertical input channel will insure a peak input signal to the sampling scope of less than 1 Volt. Factory tests are conducted using Midwest Microwave model ATT-0444-20-SMA-02 attenuators.
 - b) The TRIG output channel provides TTL level signals (approximately 0 and +3V). To avoid over-driving the TRIG input channel of some scopes, a 20 dB attenuator may be required at the input to the scope trigger channel.
 - c) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 10 GHz.

- d) Set the oscilloscope to trigger externally with the vertical setting at 100 mV/div and the horizontal setting at 10 ns/div.
- 2. Turn on the AVPP-1-B-P-COB. The main menu will appear on the LCD.
- 3. To set the AVPP-1-B-P-COB to trigger from the internal clock at a PRF of 10 kHz:
 - a) The arrow pointer should be pointing at the frequency menu item. If it is not, press the MOVE button until it is.
 - b) Press the CHANGE button. The frequency submenu will appear. Rotate the ADJUST knob until the frequency is set at 10 kHz.
 - c) The arrow pointer should be pointing at the "Internal" choice. If it is not, press MOVE until it is.
 - d) Press CHANGE to return to the main menu.
- 4. To set the delay to 100 ns:
 - a) Press the MOVE button until the arrow pointer is pointing at the delay menu item.
 - b) Press the CHANGE button. The delay submenu will appear. Rotate the ADJUST knob until the delay is set at 100 ns.
 - c) The arrow pointer should be pointing at the "Normal" choice. If it is not, press MOVE until it is.
 - d) Press CHANGE to return to the main menu.
- 5. To set the pulse width to 60 ns:
 - a) Press the MOVE button until the arrow pointer is pointing at the pulse width menu item.
 - b) Press the CHANGE button. The pulse width submenu will appear. Rotate the ADJUST knob until the pulse width is set at 60 ns.
 - c) The arrow pointer should be pointing at the "Normal" choice. If it is not, press MOVE until it is.
 - d) Press CHANGE to return to the main menu.
- 6. At this point, nothing should appear on the oscilloscope.
- 7. To enable the output:

- a) Press the MOVE button until the arrow pointer is pointing at the output menu item.
- b) Press the CHANGE button. The output submenu will appear.
- c) Press MOVE until the arrow pointer is pointing at the "ON" choice.
- d) Press CHANGE to return to the main menu.

8. To change the output amplitude:

- a) Press the MOVE button until the arrow pointer is pointing at the amplitude menu item.
- b) Press the CHANGE button. The amplitude submenu will appear. Rotate the ADJUST knob until the amplitude is set at +10V (or -10V for "-N" models).
- c) Observe the oscilloscope. You should see 60 ns wide, 10V pulses. If you do not, you may need to adjust the delay setting to a value more compatible with your sampling oscilloscope. Repeat step 4 if required. You may also need to adjust the sampling scope controls.
- d) Rotate the ADJUST knob. The amplitude as seen on the oscilloscope should vary. Return it to 10V.
- e) ("-PN" units only) Press the +/- button on the front panel. The amplitude as seen on the oscilloscope should flip polarity, to -10V.
- f) Press CHANGE to return to the main menu.

9. To set the pulse width to 2 ns:

- a) Press the MOVE button until the arrow pointer is pointing at the pulse width menu item.
- b) Press the CHANGE button. The pulse width submenu will appear. Rotate the ADJUST knob until the pulse width is set at 2 ns.
- c) Observe the oscilloscope. You should see 2 ns wide, 10V pulses. If you do not, you may need to adjust the delay setting to a value more compatible with your sampling oscilloscope. Repeat step 4 if required. You may also need to adjust the sampling scope controls. Note that this pulser has two internal pulse width ranges (of 1 8 ns and 8 ns 1 us, approximately), and the internal propagation delay is 20 ns smaller in the wider pulse range than in the narrower pulse range.
- d) Press CHANGE to return to the main menu.

This completes the operational check.

PROGRAMMING YOUR PULSE GENERATOR

KEY PROGRAMMING COMMANDS

The "Programming Manual for -B Instruments" describes in detail how to connect the pulse generator to your computer, and the programming commands themselves. A large number of commands are available; however, normally you will only need a few of these. Here is a basic sample sequence of commands that might be sent to the instrument after power-up:

*rst (resets the instrument)
trigger:source internal
frequency 1000 Hz (sets the frequency to 1000 Hz)
pulse:width 50 ns (sets the pulse width to 50 ns)
pulse:delay 20 ns (sets the delay to 20 ns)
volt:ampl 5 (sets the amplitude to +5 V)

("-N" units should use "volt:ampl -5)

output on (turns on the output)

For triggering a single event, this sequence would be more appropriate:

*rst (resets the instrument) trigger:source hold (turns off all triggering)

pulse:width 50 ns (sets the pulse width to 50 ns)

output on (turns on the output)

volt:ampl 5 (sets the amplitude to +5 V)

("-N" units should use "volt:ampl -5)

trigger:source immediate (generates a single non-repetitive trigger event)

trigger:source hold (turns off all triggering) output off (turns off the output)

To set the instrument to trigger from an external TTL signal applied to the rear-panel TRIg connector, use:

*rst (resets the instrument)
trigger:source external (selects internal triggering)
pulse:width 50 ns (sets the pulse width to 50 ns)

pulse:delay 1 us (sets the delay to 1 us) volt:ampl 5 (sets the amplitude to +5 V)

("-N" units should use "volt:ampl -5)

output on (turns on the output)

These commands will satisfy 90% of your programming needs.

ALL PROGRAMMING COMMANDS

For more advanced programmers, a complete list of the available commands is given below. These commands are described in detail in the "Programming Manual for -B Instruments". (Note: this manual also includes some commands that are not implemented in this instrument. They can be ignored.)

Keyword	<u>Parameter</u>	<u>Notes</u>
LOCAL		
OUTPut:		
:[STATe]	<boolean value=""></boolean>	
:PROTection :TRIPped?		[query only]
REMOTE		[query orny]
[SOURce]:		
:FREQuency		
[:CW FIXed]	<numeric value=""></numeric>	
[SOURce]: :PULSe		
:PERiod	<numeric value=""></numeric>	
:WIDTh	<numeric value=""></numeric>	
:DCYCle	<numeric value=""></numeric>	
:HOLD :DELay	WIDTh DCYCle <numeric value=""></numeric>	
:GATE	\numeric value>	
:TYPE	ASYNC SYNC	
:LEVel	Hlgh LÖw	
[SOURce]:		
:VOLTage [:LEVel]		
[:IMMediate]		
[:AMPLitude]	<numeric value=""> EXT</numeric>	ernal
:PROTection		
:TRIPped? STATUS:		[query only]
:OPERation		
:[EVENt]?		[query only, always returns "0"]
:CONDition?		[query only, always returns "0"]
:ENABle :QUEStionable	<numeric value=""></numeric>	[implemented but not useful]
:[EVENt]?		[query only, always returns "0"]
:CONDition?		[query only, always returns "0"]
:ENABle	<numeric value=""></numeric>	[implemented but not useful]
SYSTem: :COMMunicate		
:GPIB		
:ADDRess	<numeric value=""></numeric>	
:SERial		
:CONTrol	ON LIDE. III DED	
:RTS :[RECeive]	ON IBFull RFR	
:BAUD	1200 2400 4800 9600	
:BITS	7 8	
:ECHO	<boolean value=""></boolean>	
:PARity		

:[TYPE] EVEN | ODD | NONE :SBITS 1 | 2 :ERRor :[NEXT]? [query only] :COUNT? [query only] :VERSion? [query only] TRIGger: :SOURce INTernal | EXTernal | MANual | HOLD | IMMediate *CLS [no query form] *ESE <numeric value> *ESR? [query only] *IDN? [query only] *OPC *SAV 0 | 1 | 2 | 3 [no query form] *RCL 0 | 1 | 2 | 3 [no query form] *RST [no query form] *SRE <numeric value> *STB? [query only] *TST? [query only]

[no query form]

*WAI

PERFORMANCE CHECKSHEET