INSTRUCTIONS

MODEL AVR-A-1-S1-C-PN PULSE GENERATOR

S.N.:

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

TECHNICAL SUPPORT

Phone: 613-226-5772 or 1-800-265-6681 Fax: 613-226-2802 or 1-800-561-1970

E-mail: info@avtechpulse.com World Wide Web: http://www.avtechpulse.com

TABLE OF CONTENTS

WARRANTY
TABLE OF CONTENTS
FIG. 1: PULSE GENERATOR TEST ARRANGEMENT
GENERAL OPERATING INSTRUCTIONS
Fig. 1A: MAXIMUM PW VERSUS PRF FOR MODEL AVR-A-1 (R $_{\!\scriptscriptstyle L}$ = 50 $\Omega)_{\!\scriptscriptstyle L}$
Fig. 2: FRONT PANEL CONTROLS
FRONT PANEL CONTROLS
Fig.3: BACK PANEL CONTROLS
BACK PANEL CONTROLS
Fig.4: SYSTEM BLOCK DIAGRAM
PERFORMANCE CHECK SHEET

FIG. 1: PULSE GENERATOR TEST ARRANGEMENT

GENERAL OPERATING INSTRUCTIONS

- 1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 100 MHz. Note that this unit requires a 50 Ohm load.
- 2) The use of 60 dB attenuator at the scope vertical input channel will insure a peak input signal to the scope of less than one Volt (necessary only if sampling scope used). If a high impedance real time scope is used, the pulse generator must be terminated using a shunt 50 Ohm resistor.
- 3) The TRIG output channel provides TTL level signals. To avoid overdriving the TRIG input channel of some scopes, a 30 dB attenuator should be placed at the input to the scope trigger channel. The TRIG output precedes the main output when the front panel ADVANCE-DELAY switch is in the ADVANCE position. The TRIG output lags the main output when the switch is in the DELAY position.
- 4) To obtain a stable output display the PW and PRF controls on the front panel should be set mid range. The front panel TRIG toggle switch should be in the INT position. The DELAY controls and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired PRF by rotating the PRF controls.
- 5) The output polarity is controlled by the front panel two position polarity switch.
- 6) The output pulse width is controlled by means of the front panel one turn PW control.
- 7) The output pulse amplitude is controlled by means of the front panel one turn AMP control. To voltage control the output, set the rear panel switch in the EXT position and apply 0 to +10 Volts between terminal A and ground $(R_{IN} \ge 10K)$. (option).
- 8) An external clock may be used to control the output PRF of the AVR unit by setting the front panel TRIG toggle switch in the EXT position and applying a 0.2 us (approx.) TTL level pulse to the TRIG BNC connector input. For operation in this mode, the scope time base must also be triggered by the external clock.

9) The maximum allowable output pulse width for each PRF range (1, 2 and 3, MAX and MIN) is given in the following table. The output amplitude will decrease and the rear panel 1.0A slow blow fuse may blow and in extreme cases, the unit may fail if the pulse width (i.e. duty cycle) conditions are exceeded.

	MAX PW (us)
Range 1 PRF MAX (≈ 1.5 kHz) PRF MIN (≈ 100 Hz)	1 us 1 us
Range 2 PRF MAX (≈ 20 kHz) PRF MIN (≈ 1.5 kHz)	0.2 us 1 us
Range 3 PRF MAX (≈ 100 kHz) PRF MIN (≈ 10 kHz)	0.05 us 0.5 us

- AVR-A-1-S1-C units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument OFF and turn the indicator light ON. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn ON (i.e. light OFF) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light ON) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:
 - 11) Reducing PRF (i.e. switch to a lower range)
 - 2) Reducing pulse width (i.e. switch to a lower range)
 - 3) Removing output load short circuit (if any)
- 12) The unit can be converted from 110 to 220V 50-60 Hz operation by adjusting the voltage selector card in the rear panel fused voltage selector-cable connector assembly.

13) 14) For additional assistance:

Tel: (613) 226-5772 Fax: (613) 226-2802

Fig. 1A: MAXIMUM PW VERSUS PRF FOR MODEL AVR-A-1 ($R_L = 50 \Omega$)

Fig. 2: FRONT PANEL CONTROLS

FRONT PANEL CONTROLS

- (1) <u>ON-OFF Switch</u>. Applies basic prime power to all stages.
- (2) PRF Control. Controls PRF as follows:

Range 1 10 Hz to 100 Hz Range 2 100 Hz to 1 kHz Range 3 1 kHz to 10 kHz Range 4 10 kHz to 100 kHz

- (3) <u>DELAY Control</u>. Controls the relative delay between the reference output pulse provided at the TRIG output (4) and the main output (5). This delay is variable over the range of 0 to about 1.0 us. The TRIG output precedes the main output when the ADVANCE-DELAY switch is in the ADVANCE position and lags when the switch is in the DELAY position.
- (4) TRIG Output. This output is used to trigger the scope time base. The output is a TTL level 100 ns (approx.) pulse capable of driving a fifty Ohm load.
- (5) <u>OUT Connector</u>. BNC connector provides output to a fifty Ohm load.
- (6) <u>PW Control</u>. A one turn control which varies the output pulse width from 0.05 us to 1.0 us.
- (7) AMP Control. A one turn control which varies the output pulse amplitude from 0 to 200V to a fifty Ohm load.
- (8) <u>EXT-INT Control</u>. With this toggle switch in the INT position, the PRF of the AVR unit is controlled via an internal clock which in turn is controlled by the PRF controls. With the toggle switch in the EXT position, the AVR unit requires a 50 ns TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source.

- (9) OVERLOAD INDICATOR. AVR-A-1-S1-C units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument OFF and turn the indicator light ON. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn ON (i.e. light OFF) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light ON) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:
 - (10) Reducing PRF (i.e. switch to a lower range)
 - (11) Reducing pulse width (i.e. switch to a lower range)
 - (12) Removing output load short circuit (if any)
- (13) POLARITY: Two position switch controls output polarity.

Fig.3: BACK PANEL CONTROLS

BACK PANEL CONTROLS

- (1) <u>FUSED CONNECTOR, VOLTAGE SELECTOR</u>. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.50 A SB).
- (2) <u>1.0 A SB</u>. Fuse which protects the output stage if the output duty cycle rating is exceeded.
 - (3) <u>EA</u>. To voltage control the output amplitude, set the switch in the EXT position and apply 0 to +10 Volts between terminal A and ground ($R_{IN} > 10$ K). (option).

Fig.4: SYSTEM BLOCK DIAGRAM

PERFORMANCE CHECK SHEET