AVTECH ELECTROSYSTEMS LTD. NANOSECOND WAVEFORM ELECTRONICS SINCE 1975 P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: 888-670-8729 (USA & Canada) or +1-613-686-6675 (Intl) FAX: 800-561-1970 (USA & Canada) or +1-613-686-6679 (Intl) BOX 5120, LCD MERIVALE OTTAWA, ONTARIO CANADA K2C 3H5 info@avtechpulse.com - http://www.avtechpulse.com/ ### **INSTRUCTIONS** MODEL AVR-AHF-1-B 250 Volts, 100 kHz PULSE GENERATOR WITH IEEE 488.2 AND RS-232 CONTROL | SERIAL | NUMBER: | | | |--------|---------|--|--| | | | | | #### WARRANTY Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied. #### **TECHNICAL SUPPORT** Phone: 888-670-8729 (USA & Canada) or +1-613-686-6675 (International) Fax: 800-561-1970 (USA & Canada) or +1-613-686-6679 (International) E-mail: info@avtechpulse.com World Wide Web: http://www.avtechpulse.com ## **TABLE OF CONTENTS** | WARRANTY | 2 | |--|----| | TECHNICAL SUPPORT | 2 | | TABLE OF CONTENTS | 3 | | INTRODUCTION | 5 | | AVAILABLE OPTIONS | 6 | | SPECIFICATIONS | 7 | | REGULATORY NOTES | 8 | | FCC PART 18 | 8 | | EC DECLARATION OF CONFORMITY | 8 | | DIRECTIVE 2011/65/EU (RoHS) | 9 | | DIRECTIVE 2002/96/EC (WEEE) | 9 | | FIRMWARE LICENSING | 10 | | INSTALLATION | 11 | | VISUAL CHECK | 11 | | POWER RATINGS | 11 | | CONNECTION TO THE POWER SUPPLY | 11 | | PROTECTION FROM ELECTRIC SHOCK | 12 | | ENVIRONMENTAL CONDITIONS | 13 | | LABVIEW DRIVERS | 13 | | FUSES | 14 | | AC FUSE REPLACEMENT | 14 | | DC FUSE REPLACEMENT | 15 | | FUSE RATINGS | 15 | | FRONT PANEL CONTROLS | 16 | | REAR PANEL CONTROLS | 18 | | GENERAL INFORMATION | 20 | | BASIC PULSE CONTROL | 20 | | TRIGGER MODES | 22 | | PULSE WIDTH MODES | 22 | | GATING MODES | 22 | | ELECTRONIC AMPLITUDE CONTROL, "-EA" OPTION | 23 | | OUTPUT IMPEDANCE | 23 | | PREVENTING OUTPUT STAGE FAILURE | 23 | | OPERATIONAL CHECK | 24 | |---|----| | PROGRAMMING YOUR PULSE GENERATOR | 27 | | KEY PROGRAMMING COMMANDS | 27 | | ALL PROGRAMMING COMMANDS | 28 | | MECHANICAL INFORMATION | 30 | | TOP COVER REMOVAL | 30 | | RACK MOUNTING | 30 | | ELECTROMAGNETIC INTERFERENCE | 30 | | MAINTENANCE | 31 | | REGULAR MAINTENANCE | 31 | | CLEANING | 31 | | TRIGGER DAMAGE | 31 | | WIRING DIAGRAMS | 32 | | WIRING OF AC POWER | 32 | | WIRING OF DC POWER | 33 | | PCB 158Q - LOW VOLTAGE POWER SUPPLY, 1/3 | 34 | | PCB 158Q - LOW VOLTAGE POWER SUPPLY, 2/3 | 35 | | PCB 158Q - LOW VOLTAGE POWER SUPPLY, 3/3 | 36 | | PCB 197F - HIGH VOLTAGE DC POWER SUPPLY & DISCHARGE | 37 | | PCB 183A-S AND 183A-P CAPACITOR BANKS | 38 | | PCB 156D - POLARITY CONTROL BOARD (-PN UNITS ONLY) | 39 | | PCB 104F - KEYPAD / DISPLAY BOARD, 1/3 | 40 | | PCB 104F - KEYPAD / DISPLAY BOARD, 2/3 | 41 | | PCB 104F - KEYPAD / DISPLAY BOARD, 3/3 | | | MAIN WIRING (-P UNITS) | 43 | | MAIN WIRING (-PN UNITS) | 44 | | PERFORMANCE CHECK SHEET | 45 | Manual Reference: /fileserver1/officefiles/instructword/avr-a/AVR-AHF-1-B,edition9.odt. Last modified February 29, 2024. Copyright © 2024 Avtech Electrosystems Ltd, All Rights Reserved. #### INTRODUCTION The AVR-AHF-1-B is a high performance, GPIB and RS232-equipped instrument capable of generating up to 250V at repetition rates up to 100 kHz into loads of 50Ω or higher. The pulse width is variable from 50 to 500 ns, and the duty cycle may be as high as 4%. Rise and fall times are fixed at less than 10 ns. The AVR-AHF-1-B includes an internal trigger source, but it can also be triggered or gated by an external source. A front-panel pushbutton can also be used to trigger the instrument. The output pulse width can be set to follow an input trigger pulse width. The output voltage polarity depends on the model number: "-P" units: up to +250 Volts "-N" units: up to -250 Volts "-PN" units: up to ±250 Volts The AVR-AHF-1-B features front panel keyboard and adjust knob control of the output pulse parameters along with a four line by 40-character backlit LCD display of the output amplitude, pulse width, pulse repetition frequency, and delay. The instrument includes memory to store up to four complete instrument setups. The operator may use the front panel or the computer interface to store a complete "snapshot" of all key instrument settings, and recall this setup at a later time. The instrument is protected against overload conditions (such as short circuits) by an automatic control circuit. An internal power supply monitor removes the power to the output stage for five seconds if an average power overload exists. After that time, the unit operates normally for one second, and if the overload condition persists, the power is cut again. This cycle repeats until the overload is removed. This instrument is intended for use in research, development, test and calibration laboratories by qualified personnel. #### AVAILABLE OPTIONS -EA Option: The amplitude can be controlled by an externally generated 0 to +10V analog control voltage. -R5 Option: Rack-mount kit. -VXI Option: Adds a rear-panel Ethernet connector, allowing the instrument to be remotely controlled using the VXI-11.3, ssh (secure shell), telnet, and http (web) protocols. In particular, the VXI-11.3 features allows software like LabView to control an instrument using standard VISA communications drivers and network cabling, instead of using old-style GPIB cabling. (This eliminates the need for a GPIB controller card and its proprietary drivers.) #### **SPECIFICATIONS** | Model: | AVR-AHF-1-B ² | | |---|---|--| | Amplitude ^{3,4,5} : (50 Ohm load) | < 10 to 250 Volts | | | Pulse width (FWHM) ^{3,5} : | 50 to 500 ns | | | PRF: | 0 to 100 kHz | | | Rise & fall times (20%-80%): | ≤ 10 ns | | | Maximum duty cycle: | 4% | | | Maximum avg. output power: | 50 Watts | | | Required load: | ≥ 50 Ω | | | Polarity ⁶ : | Positive or negative or both (specify) | | | Front-panel controls: | Keypad and adjust knob, and GPIB / RS-232 control | | | GPIB and RS-232 control ² : | Standard on -B units. | | | LabView drivers: | Check http://www.avtechpulse.com/labview for availability and downloads | | | Ethernet port, for remote control using VXI-11.3, ssh, telnet, & web: | Optional ⁹ . Recommended as a modern alternative to GPIB / RS-232.
See http://www.avtechpulse.com/options/vxi for details. | | | Settings resolution: | The resolution of the timing parameters (pulse width, delay, period) varies, but is always better than 0.15% of (set value + 20 ns). The amplitude resolution is < 0.1% of the maximum amplitude. | | | Settings accuracy: | Typically \pm 3% (plus \pm 1V or \pm 2 ns) after 10 minute warmup. For high-accuracy applications requiring traceable calibration, verify the output parameters with a calibrated oscilloscope. | | | Propagation delay: | ≤ 100 ns (Ext trig in to pulse out) | | | Jitter: | ± 100 ps ± 0.03% of sync delay, Ext trig in to pulse out | | | DC offset or bias insertion: | Option available. Apply required DC offset or bias in the range of \pm 50 Volts, (250 mA max) to back panel solder terminal. See note 7. | | | Trigger modes: | Internal trigger, external trigger (TTL level pulse, $>$ 10 ns, 1 k Ω input impedance), front-panel "Single Pulse" pushbutton, or single pulse trigger via computer command. | | | Variable delay: | 0 to 1.0 seconds, for all trigger modes (including external trigger). | | | Sync output: | > +3 Volts, > 50 ns, will drive 50 Ohm loads | | | Gate input: | Synchronous or asynchronous, active high or low, switchable. Suppresses triggering when active. | | | Connectors: | Out, Trig, Sync, Gate: BNC | | | Dimensions: | 100 mm x 430 mm x 375 mm (3.9" x 17" x 14.8") | | | Power requirements: | 100 - 240 Volts, 50 - 60 Hz | | | Chassis material: | Cast aluminum frame & handles, blue vinyl on aluminum cover plates | | | Mounting: | Any | | | Temperature range: | +5°C to +40°C | | - 1) -C suffix indicates stand-alone lab instrument with internal clock and line powering. No suffix indicates miniature module requiring DC power and external trigger. (See http://www.avtechpulse.com/formats for details of the four basic instrument formats). -B suffix indicates IEEE-488.2 GPIB and RS-232 control of amplitude, pulse width, PRF and delay (See http://www.avtechpulse.com/qpib). - 3) For analog electronic control (0 to +10V) of the amplitude, suffix model number with -EA. Electronic control units also include standard front-panel - 4) For operation at amplitudes of less than 10% of full-scale, best results will be obtained by setting the amplitude near full-scale and using external - 5) For 10-turn dial control of pulse width (or amplitude) suffix model number with -PWT (or -AT). For -C units only. 6) Indicate desired polarity by suffixing model No. by -P or -N (i.e. positive or negative) or -PN for dual polarity option. Polarity reversal is achieved by means of a two-position switch on -C units and by keypad control on -B units. - For DC offset option suffix model number with -OS. - 8) The instrument may be damaged by load impedances outside this range. 9) Add the suffix -VXI to the model number to specify the Ethernet port. ### **REGULATORY NOTES** #### FCC PART 18 This device complies with part 18 of the FCC rules for non-consumer industrial, scientific and medical (ISM) equipment. This instrument is enclosed in a rugged metal chassis and uses a filtered power entry module (where applicable). The main output signal is provided on a shielded connector that is intended to be used with shielded coaxial cabling and a shielded load. Under these conditions, the interference potential of this instrument is low. If interference is observed, check that appropriate well-shielded cabling is used on the output connectors. Contact Avtech (info@avtechpulse.com) for advice if you are unsure of the most appropriate cabling. Also, check that your load is adequately shielded. It may be necessary to enclose the load in a metal enclosure. If any of the connectors on the instrument are unused, they should be covered with shielded metal "dust caps" to reduce the interference potential. This instrument does not normally require regular maintenance to minimize interference potential. However, if loose hardware or connectors are noted, they should be tightened. Contact Avtech (info@avtechpulse.com) if you require assistance. ### **EC DECLARATION OF CONFORMITY** We Avtech Electrosystems Ltd. P.O. Box 5120, LCD Merivale Ottawa, Ontario Canada K2C 3H5 declare that this pulse generator meets the intent of Directive 2004/108/EG for Electromagnetic Compatibility. Compliance pertains to the following specifications as listed in the official Journal of the European Communities: EN 50081-1 Emission EN 50082-1 Immunity and that this pulse generator meets the intent of the Low Voltage Directive 2006/95/EC. Compliance pertains to the following specifications as listed in the official Journal of the European Communities: EN 61010-1:2001 Safety requirements for electrical equipment for measurement, control, and laboratory use #### DIRECTIVE 2011/65/EU (RoHS) We Avtech Electrosystems Ltd. P.O. Box 5120, LCD Merivale Ottawa, Ontario Canada K2C 3H5 declare that, to the best of our knowledge, all electrical and electronic equipment (EEE) sold by the company are in compliance with Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (also known as "RoHS Recast"). In addition, this declaration of conformity is issued under the sole responsibility of Avtech Electrosystems Ltd. Specifically, products manufactured do not contain the substances listed in the table below in concentrations greater than the listed maximum value. | Material/Substance | Threshold level | |---------------------------------------|---------------------------| | Lead (Pb) | < 1000 ppm (0.1% by mass) | | Mercury (Hg) | < 1000 ppm (0.1% by mass) | | Hexavalent Chromium (Cr6+) | < 1000 ppm (0.1% by mass) | | Polybrominated Biphenyls (PBB) | < 1000 ppm (0.1% by mass) | | Polybrominated Diphenyl ethers (PBDE) | < 1000 ppm (0.1% by mass) | | Cadmium (Cd) | < 100 ppm (0.01% by mass) | #### DIRECTIVE 2002/96/EC (WEEE) European customers who have purchased this equipment directly from Avtech will have completed a "WEEE Responsibility Agreement" form, accepting responsibility for WEEE compliance (as mandated in Directive 2002/96/EC of the European Union and local laws) on behalf of the customer, as provided for under Article 9 of Directive 2002/96/EC. Customers who have purchased Avtech equipment through local representatives should consult with the representative to determine who has responsibility for WEEE compliance. Normally, such responsibilities with lie with the representative, unless other arrangements (under Article 9) have been made. Requirements for WEEE compliance may include registration of products with local governments, reporting of recycling activities to local governments, and financing of recycling activities. #### FIRMWARE LICENSING Instruments with firmware versions 5.00 or higher use open-source software internally. Some of this software requires that the source code be made available to the user as a condition of its licensing. This source code is available upon request (contact info@avtechpulse.com). Earlier firmware versions do not contain any open source software. #### INSTALLATION #### VISUAL CHECK After unpacking the instrument, examine to ensure that it has not been damaged in shipment. Visually inspect all connectors, knobs, liquid crystal displays (LCDs), and the handles. Confirm that a power cord, a GPIB cable, and two instrumentation manuals (this manual and the "Programming Manual for -B Instruments") are with the instrument. If the instrument has been damaged, file a claim immediately with the company that transported the instrument. ### **POWER RATINGS** This instrument is intended to operate from 100 - 240 V, 50 - 60 Hz. The maximum power consumption is 125 Watts. Please see the "FUSES" section for information about the appropriate AC and DC fuses. This instrument is an "Installation Category II" instrument, intended for operation from a normal single-phase supply. #### CONNECTION TO THE POWER SUPPLY An IEC-320 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket. The other end of the detachable power cord plugs into the local mains supply. Use only the cable supplied with the instrument. The mains supply must be earthed, and the cord used to connect the instrument to the mains supply must provide an earth connection. (The supplied cord does this.) Warning: Failure to use a grounded outlet may result in injury or death due to electric shock. This product uses a power cord with a ground connection. It must be connected to a properly grounded outlet. The instrument chassis is connected to the ground wire in the power cord. The table below describes the power cord that is normally supplied with this instrument, depending on the destination region: | Destination Region | Description | Option | Manufacturer | Part Number | |---|--|--------|--------------|-------------| | United Kingdom, Hong Kong,
Singapore, Malaysia | BS 1363,
230V, 50 Hz | -AC00 | Qualtek | 370001-E01 | | Australia, New Zealand | AS 3112:2000,
230-240V, 50 Hz | -AC01 | Qualtek | 374003-A01 | | Continental Europe, Korea,
Indonesia, Russia | European CEE 7/7
"Schuko" 230V, 50 Hz | -AC02 | Qualtek | 364002-D01 | | North America, Taiwan | NEMA 5-15,
120V, 60 Hz | -AC03 | Qualtek | 312007-01 | | Switzerland | SEV 1011,
230V, 50 Hz | -AC06 | Qualtek | 378001-E01 | | South Africa, India | SABS 164-1,
220-250V, 50 Hz | -AC17 | Volex | 2131H 10 C3 | | Japan | JIS 8303,
100V, 50-60 Hz | -AC18 | Qualtek | 397002-01 | | Israel | SI 32,
220V, 50 Hz | -AC19 | Qualtek | 398001-01 | | China | GB 1002-1,
220V, 50 Hz | -AC22 | Volex | 2137H 10 C3 | #### PROTECTION FROM ELECTRIC SHOCK Operators of this instrument must be protected from electric shock at all times. The owner must ensure that operators are prevented access and/or are insulated from every connection point. In some cases, connections must be exposed to potential human contact. Operators must be trained to protect themselves from the risk of electric shock. This instrument is intended for use by qualified personnel who recognize shock hazards and are familiar with safety precautions required to avoid possibly injury. In particular, operators should: - 1. Keep exposed high-voltage wiring to an absolute minimum. - 2. Wherever possible, use shielded connectors and cabling. - 3. Connect and disconnect loads and cables only when the instrument is turned off. - 4. Keep in mind that all cables, connectors, oscilloscope probes, and loads must have an appropriate voltage rating. - 5. Do not attempt any repairs on the instrument, beyond the fuse replacement procedures described in this manual. Contact Avtech technical support (see page 2 for contact information) if the instrument requires servicing. Service is to be performed solely by qualified service personnel. ### **ENVIRONMENTAL CONDITIONS** This instrument is intended for use under the following conditions: - 1. indoor use; - 2. altitude up to 2 000 m; - 3. temperature 5 °C to 40 °C; - 4. maximum relative humidity 80 % for temperatures up to 31 °C decreasing linearly to 50 % relative humidity at 40 °C; - 5. Mains supply voltage fluctuations up to ±10 % of the nominal voltage; - 6. no pollution or only dry, non-conductive pollution. ### **LABVIEW DRIVERS** A LabVIEW driver for this instrument is available for download on the Avtech web site, at http://www.avtechpulse.com/labview. A copy is also available in National Instruments' Instrument Driver Library at http://www.natinst.com/. ### **FUSES** This instrument contains four fuses. All are accessible from the rear-panel. Two protect the AC prime power input, and two protect the internal DC power supplies. The locations of the fuses on the rear panel are shown in the figure below: ## **AC FUSE REPLACEMENT** To physically access the AC fuses, the power cord must be detached from the rear panel of the instrument. The fuse drawer may then be extracted using a small flat-head screwdriver, as shown below: ## **DC FUSE REPLACEMENT** The DC fuses may be replaced by inserting the tip of a flat-head screwdriver into the fuse holder slot, and rotating the slot counter-clockwise. The fuse and its carrier will then pop out. ## **FUSE RATINGS** The following table lists the required fuses: | | Nominal | | | Recommended R | Replacement Part | |-------------|------------------|---------------------------|-----------|---------------------------|--------------------------| | Fuses | Mains
Voltage | Rating | Case Size | Littelfuse Part
Number | Digi-Key Stock
Number | | #1 #2 (AC) | 115 V | 1.6A, 250V,
Time-Delay | 5×20 mm | 021801.6HXP | F2424-ND | | #1, #2 (AC) | 230 V | 0.8A, 250V,
Time-Delay | 5×20 mm | 0218.800HXP | F2418-ND | | #3 (DC) | N/A | 2.0A, 250V,
Time-Delay | 5×20 mm | 0218002.HXP | F2420-ND | | #4 (DC) | N/A | 4.0A, 250V,
Time-Delay | 5×20 mm | 0218004.HXP | F2421-ND | The recommended fuse manufacturer is Littelfuse (http://www.littelfuse.com). Replacement fuses may be easily obtained from Digi-Key (http://www.digikey.com/) and other distributors. #### FRONT PANEL CONTROLS 1. <u>POWER Switch</u>. This is the main power switch. When turning the instrument on, there is normally a delay of 10 seconds before anything is shown on the main display, as the internal operating system boots up. If the main menu does not appear after 30 seconds, turn off the instrument and leave it off for at least 60 seconds before applying power again. 2. OVERLOAD Indicator. When the instrument is powered, this indicator is normally green, indicating normal operation. If this indicator is yellow, an internal automatic overload protection circuit has been tripped. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a very low impedance), the protective circuit will disable the output of the instrument and turn the indicator light yellow. The light will stay yellow (i.e. output disabled) for about 5 seconds after which the instrument will attempt to re-enable the output (i.e. light green) for about 1 second. If the overload condition persists, the output will be disabled again (i.e. light yellow) for another 5 seconds. If the overload condition has been removed, the instrument will resume normal operation. This overload indicator may flash yellow briefly at start-up. This is not a cause for concern. - 3. <u>OUT CONNECTOR</u>. This connector provides the output to a 50Ω (or higher) load. - Caution: Voltages as high as ±250V may be present on the center conductor of this output connector. Avoid touching this conductor. Connect to this connector using standard coaxial cable, to ensure that the center conductor is not exposed. - 4. <u>SYNC OUT</u>. This connector supplies a SYNC output that can be used to trigger other equipment, particularly oscilloscopes. This signal leads (or lags) the main output by a duration set by the "DELAY" controls and has an approximate amplitude of +3 Volts to $R_L > 50\Omega$ with a pulse width of approximately 100 ns. 5. <u>LIQUID CRYSTAL DISPLAY (LCD)</u>. This LCD is used in conjunction with the keypad to change the instrument settings. Normally, the main menu is displayed, which lists the key adjustable parameters and their current values. The "Programming Manual for -B Instruments" describes the menus and submenus in detail. ## 6. KEYPAD. | Control Name | Function | |--------------|---| | MOVE | This moves the arrow pointer on the display. | | CHANGE | This is used to enter the submenu, or to select the operating | | | mode, pointed to by the arrow pointer. | | ×10 | If one of the adjustable numeric parameters is displayed, this | | | increases the setting by a factor of ten. | | ÷10 | If one of the adjustable numeric parameters is displayed, this | | | decreases the setting by a factor of ten. | | +/- | If one of the adjustable numeric parameters is displayed, and | | | this parameter can be both positive or negative, this changes the | | | sign of the parameter. | | EXTRA FINE | This changes the step size of the ADJUST knob. In the extra- | | | fine mode, the step size is twenty times finer than in the normal | | | mode. This button switches between the two step sizes. | | ADJUST | This large knob adjusts the value of any displayed numeric | | | adjustable values, such as frequency, pulse width, etc. The | | | adjust step size is set by the "EXTRA FINE" button. | | | | | | When the main menu is displayed, this knob can be used to | | | move the arrow pointer. | #### REAR PANEL CONTROLS Note: some connectors may be in different positions than shown above, depending on the exact combination of options ordered. - 1. <u>AC POWER INPUT</u>. An IEC-320 C14 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket. - 2. <u>AC FUSE DRAWER</u>. The two fuses that protect the AC input are located in this drawer. Please see the "FUSES" section of this manual for more information. - 3. <u>DC FUSES</u>. These two fuses protect the internal DC power supplies. Please see the "FUSES" sections of this manual for more information. - 4. <u>GATE</u>. This TTL-level (0 and +5V) logic input can be used to gate the triggering of the instrument. This input can be either active high or active low, depending on the front panel settings or programming commands. (The instrument triggers normally when this input is unconnected). When set to active high mode, this input is pulled-down to ground by a 1 k Ω resistor. When set to active low mode, this input is pulled-up to +5V by a 1 k Ω resistor. - 5. TRIG. This TTL-level (0 and +5V) logic input can be used to trigger the instrument, if the instrument is set to triggering externally. The instrument triggers on the rising edge of this input. The input impedance of this input is 1 k Ω . (Depending on the length of cable attached to this input, and the source driving it, it may be desirable to add a coaxial 50 Ohm terminator to this input to provide a proper transmission line termination. The Pasternack (www.pasternack.com) PE6008-50 BNC feed-thru 50 Ohm terminator is suggested for this purpose.) When triggering externally, the instrument can be set such that the output pulse width tracks the pulse width on this input, or the output pulse width can be set independently. - 6. <u>GPIB Connector</u>. A standard GPIB cable can be attached to this connector to allow the instrument to be computer-controlled. See the "Programming Manual for -B Instruments" for more details on GPIB control. - 7. RS-232 Connector. A standard serial cable with a 25-pin male connector can be attached to this connector to allow the instrument to be computer-controlled. A user name ("admin") and a password ("default", as shipped from the factory) are required when logging into a serial terminal session. The internal controller attempts to autosense the parity setting. It may be necessary to send a few return characters before attempting a login in order to provide enough data to allow this auto-sensing to work. (A standard Linux "agetty" process is used to implement serial control internally.) See the "Programming Manual for -B Instruments" for more details on RS-232 control. - 8. <u>Network Connector</u>. (Optional feature. Present on -VXI units only.) This Ethernet connector allows the instrument to be remotely controlled using the VXI-11.3, ssh (secure shell), telnet, and http (web) protocols. See the "Programming Manual for -B Instruments" for more details. - 9. <u>AMP Connector</u>. (Optional feature. Present on -EA units only.) The output amplitude can be set to track the voltage on this input. Zero Volts in corresponds to zero amplitude output, and +10V in corresponds to maximum amplitude out. This mode is activated by selecting "Ext Control" on the front-panel amplitude menu, or with the "source:voltage external" command. #### **GENERAL INFORMATION** #### BASIC PULSE CONTROL This instrument can be triggered by its own internal clock or by an external TTL trigger signal. In either case, two output channels respond to the trigger: OUT and SYNC. The OUT channel is the signal that is applied to the load. Its amplitude and pulse width are variable. The SYNC pulse is a fixed-width TTL-level reference pulse used to trigger oscilloscopes or other measurement systems. When the delay is set to a positive value the SYNC pulse precedes the OUT pulse. When the delay is set to a negative value the SYNC pulse follows the OUT pulse. These pulses are illustrated below, assuming internal triggering and a positive delay: If the delay is negative, the order of the SYNC and OUT pulses is reversed: The next figure illustrates the relationship between the signal when an external TTL-level trigger is used: As before, if the delay is negative, the order of the SYNC and OUT pulses is reversed. The last figure illustrates the relationship between the signal when an external TTL-level trigger is used in the PW_{IN}=PW_{OUT} mode. In this case, the output pulse width equals the external trigger's pulse width (approximately), and the delay circuit is bypassed: The delay, pulse width, and frequency (when in the internal mode), of the OUT pulse can be varied with front panel controls or via the GPIB or RS-232 computer interfaces. ### TRIGGER MODES This instrument has four trigger modes: - Internal Trigger: the instrument controls the trigger frequency, and generates the clock internally. - External Trigger: the instrument is triggered by an external TTL-level clock on the back-panel TRIG connector. - Manual Trigger: the instrument is triggered by the front-panel "SINGLE PULSE" pushbutton. - Hold Trigger: the instrument is set to not trigger at all. These modes can be selected using the front panel trigger menu, or by using the appropriate programming commands. (See the "Programming Manual for -B Instruments" for more details.) ### PULSE WIDTH MODES This instrument has two pulse width modes: - Normal: the instrument controls the output pulse width. - PW_{IN}=PW_{OUT}: the output pulse width equals the pulse width of the trigger signal on the "TRIG" connector. The instrument must be in the external trigger mode. These modes can be selected using the front panel pulse width menu, or by using the appropriate programming commands. (See the "Programming Manual for -B Instruments" for more details.) #### **GATING MODES** Triggering can be suppressed by a TTL-level signal on the rear-panel GATE connector. The instrument can be set to stop triggering when this input high or low, using the front-panel gate menu or the appropriate programming commands. This input can also be set to act synchronously or asynchronously. When set to asynchronous mode, the GATE will disable the output immediately. Output pulses may be truncated. When set to synchronous mode, the output will complete the full pulse width if the output is high, and then stop triggering. No pulses are truncated in this mode. ## ELECTRONIC AMPLITUDE CONTROL, "-EA" OPTION The output amplitude can be set to track the voltage on this input. Zero Volts in corresponds to zero amplitude output, and +10V in corresponds to maximum amplitude out. This mode is activated by selecting "Ext Control" on the front-panel amplitude menu, or with the "source:voltage external" command. The polarity remains at its last setting. #### **OUTPUT IMPEDANCE** The AVR-AHF-1-B features an output impedance of the order of several Ohms (rather than 50 Ohms). The following consequences of this feature should be noted: - When used to switch some semiconductor devices (eg. bipolar and VMOS power transistors), the AVR unit will yield much faster switching times than those provided by 50 Ohm pulse generators. - The AVR unit will safely operate in to load impedances in the range of 50 Ohms to an open circuit. However, severe ringing may occur on the output waveform if a high-impedance load is used, due to transmission line impedance mismatching. When driving high impedance loads, it may be beneficial to add a 50 Ohm impedance in parallel with the high impedance load (as close to the load as possible), in order to provide a proper termination for any transmission lines used. Alternatively, a 50 Ohm resistance may be added in series with the AVR output (as close to instrument output connector as possible) to provide transmission line "backmatching". - The AVR unit may be effectively converted to a 50 Ohm output impedance generator by placing a 50 Ohm carbon composition resistor in series with the output of the unit and the load. The maximum available load voltage will then decrease to 125 Volts (from 250 Volts). #### PREVENTING OUTPUT STAGE FAILURE The output stage is protected against overload conditions by an overload circuit and fuses on the main frame back panel. However, the output switching elements may fail if the unit is triggered at a PRF exceeding 100 kHz or at duty cycles resulting in an average output power in excess of 50 Watts. Heating and subsequent possible failure of the output stage is reduced if the following action is taken where possible: - PRF is kept to a minimum, i.e. operate in a low PRF range when possible rather than in a high PRF range. - Keep the output pulse width to a minimum. - Never apply an externally generated voltage to the output port. #### OPERATIONAL CHECK This section describes a sequence to confirm the basic operation of the instrument. It should be performed after receiving the instrument. It is a useful learning exercise as well. Before proceeding with this procedure, finish read this instruction manual thoroughly. Then read the "Local Control" section of the "Programming Manual for -B Instruments" thoroughly. The "Local Control" section describes the front panel controls used in this operational check - in particular, the MOVE, CHANGE, and ADJUST controls. 1. Connect a cable from the SYNC OUT connector to the TRIG input of an oscilloscope. Connect a 50W (or higher) 50Ω load to the OUT connector and place the scope probe across this load. The load resistor <u>must</u> have a voltage rating of at least 250V. The power dissipated in the resistor is given by $$P = (V^2 / R) \times (PW / T) = (V^2 / R) \times PW \times f$$ where "V" is the output voltage, "R" is the load resistance, "PW" is the pulse width, and "T" is the pulse period (1/frequency), and "f" is the frequency. - 2. Set the oscilloscope to trigger externally with the vertical setting at 50 Volts/div and the horizontal setting at 100 ns/div. Be sure that your oscilloscope and probe setup can handle the maximum amplitude of 250V. The 50Ω load resistor should be rated for at least 250V of voltage and 50W of power. - 3. Turn on the AVR-AHF-1-B. The main menu will appear on the LCD. - 4. To set the AVR-AHF-1-B to trigger from the internal clock at a PRF of 10 kHz: - The arrow pointer should be pointing at the frequency menu item. If it is not, press the MOVE button until it is. - Press the CHANGE button. The frequency submenu will appear. Rotate the ADJUST knob until the frequency is set at 10 kHz. - The arrow pointer should be pointing at the "Internal" choice. If it is not, press MOVE until it is. - Press CHANGE to return to the main menu. - 5. To set the delay to 100 ns: - Press the MOVE button until the arrow pointer is pointing at the delay menu item. - Press the CHANGE button. The delay submenu will appear. Rotate the ADJUST knob until the delay is set at 100 ns. - The arrow pointer should be pointing at the "Normal" choice. If it is not, press MOVE until it is. - Press CHANGE to return to the main menu. - 6. To set the pulse width to 500 ns: - Press the MOVE button until the arrow pointer is pointing at the pulse width menu item. - Press the CHANGE button. The pulse width submenu will appear. Rotate the ADJUST knob until the pulse width is set at 500 ns. - The arrow pointer should be pointing at the "Normal" choice. If it is not, press MOVE until it is. - Press CHANGE to return to the main menu. - 7. At this point, nothing should appear on the oscilloscope. - 8. To enable the output: - Press the MOVE button until the arrow pointer is pointing at the output menu item. - Press the CHANGE button. The output submenu will appear. - Press MOVE until the arrow pointer is pointing at the "ON" choice. - Press CHANGE to return to the main menu. - 9. To change the output amplitude: - Press the MOVE button until the arrow pointer is pointing at the amplitude menu item. - Press the CHANGE button. The amplitude submenu will appear. Rotate the ADJUST knob until the amplitude is set at +250V (or -250V for "-N" instruments). - Observe the oscilloscope. You should see 500 ns wide, 250V pulses. - Rotate the ADJUST knob. The amplitude as seen on the oscilloscope should vary. - Reduce the amplitude to 50V (or -50V for "-N" instruments), using the adjust knob. - For "-PN" units only: Change the output polarity by pressing the "+/-" button. The output amplitude should become negative, and you should see -50V pulses on the oscilloscope. (Avoid switching polarity when the amplitude is higher than 100V. Reduce the amplitude first.) - Rotate the ADJUST knob. The amplitude as seen on the oscilloscope should vary. - Press CHANGE to return to the main menu. - 10. Repeat step 9, but set the amplitude to zero. - 11. This completes the operational check. #### PROGRAMMING YOUR PULSE GENERATOR #### **KEY PROGRAMMING COMMANDS** The "Programming Manual for -B Instruments" describes in detail how to connect the pulse generator to your computer, and the programming commands themselves. A large number of commands are available; however, normally you will only need a few of these. Here is a basic sample sequence of commands that might be sent to the instrument after power-up: *rst (resets the instrument) trigger:source internal (selects internal triggering) frequency 1000 Hz (sets the frequency to 1000 Hz) (sets the pulse width to 500 ns) pulse:width 500 ns (sets the delay to 2 us) pulse:delay 2 us volt 250 (sets the amplitude to 250 V) output on (turns on the output) For triggering a single event, this sequence would be more appropriate: *rst (resets the instrument) trigger:source hold (turns off all triggering) pulse:width 500 ns (sets the pulse width to 500 ns) pulse:delay 2 us (sets the delay to 2 us) output on (turns on the output) volt 250 (sets the amplitude to 250 V) trigger:source immediate (generates a single non-repetitive trigger event) (turns off all triggering) trigger:source hold (turns off the output) output off To set the instrument to trigger from an external TTL signal applied to the rear-panel TRIG connector, use: *rst (resets the instrument) trigger:source external (selects internal triggering) (sets the pulse width to 500 ns) pulse:width 500 ns pulse:delay 2 us (sets the delay to 2 us) volt 250 (sets the amplitude to 250 V) (turns on the output) output on These commands will satisfy 90% of your programming needs. ## **ALL PROGRAMMING COMMANDS** For more advanced programmers, a complete list of the available commands is given below. These commands are described in detail in the "Programming Manual for -B Instruments". (Note: this manual also includes some commands that are not implemented in this instrument. They can be ignored.) | Keyword | <u>Parameter</u> | <u>Notes</u> | |--------------------------------------|---|--------------------------------------| | OUTPut:
:[STATe]
:PROTection | <boolean value=""></boolean> | | | :TRIPped?
[SOURce]: | | [query only] | | :FREQuency | | | | [:CW FIXed]
[SOURce]:
:PULSe | <numeric value=""></numeric> | | | :PERiod | <numeric value=""></numeric> | | | :WIDTh | <numeric value=""> EXT</numeric> | -
ernal | | :DCYCle | <numeric value=""></numeric> | | | :HOLD | WIDTh DCYCle | | | :DELay | <numeric value=""></numeric> | | | :GATE | | | | :TYPE | ASYNC SYNC | | | :LEVel | HIgh LOw | | | [SOURce]: | | | | :VOLTage | | | | [:LEVel] | | | | [:IMMediate]
[:AMPLitude] | <numeric value=""> EXT</numeric> | Cornal | | :PROTection | <pre><iruinenc ext<="" pre="" value="" =""></iruinenc></pre> | emai | | :TRIPped? | | [query only] | | STATUS: | | [query only] | | :OPERation | | | | :[EVENt]? | | [query only, always returns "0"] | | :CONDition? | | [query only, always returns "0"] | | :ENABle | <numeric value=""></numeric> | [implemented but not useful] | | :QUEStionable | | [p] | | :[EVENt]? | | [query only, always returns "0"] | | :CONDition? | | [query only, always returns "0"] | | :ENABle | <numeric value=""></numeric> | [implemented but not useful] | | SYSTem: | | | | :COMMunicate | | | | :GPIB | | | | :ADDRess | <numeric value=""></numeric> | | | :SERial | | | | :CONTrol | | | | :RTS | ON IBFull RFR | | | :[RECeive] | | | | :BAUD | 1200 2400 4800 96 | 500 19200 38400 57600 115200 | | :ERRor | | F | | :[NEXT]? | | [query only] | | :COUNT? | | [query only] | | :VERSion? | | [query only] | | TRIGger: | | | | :SOURce
*CLS | INTernal EXTernal M | IANual HOLD IMMediate
[no query form] | |-----------------|------------------------------|--| | *ESE | <numeric value=""></numeric> | [quely ie] | | *ESR? | | [query only] | | *IDN? | | [query only] | | *OPC | | | | *SAV | 0 1 2 3 | [no query form] | | *RCL | 0 1 2 3 | [no query form] | | *RST | | [no query form] | | *SRE | <numeric value=""></numeric> | | | *STB? | | [query only] | | *TST? | | [query only] | | *WAI | | [no query form] | #### MECHANICAL INFORMATION #### TOP COVER REMOVAL If necessary, the interior of the instrument may be accessed by removing the four Phillips screws on the top panel. With the four screws removed, the top cover may be slid back (and off). Always disconnect the power cord and allow the instrument to sit unpowered for 10 minutes before opening the instrument. This will allow any internal stored charge to discharge. There are no user-adjustable internal circuits. For repairs other than fuse replacement, please contact Avtech (info@avtechpulse.com) to arrange for the instrument to be returned to the factory for repair. Service is to be performed solely by qualified service personnel. Caution: High voltages are present inside the instrument during normal operation. Do not operate the instrument with the cover removed. #### **RACK MOUNTING** A rack mounting kit is available. The -R5 rack mount kit may be installed after first removing the one Phillips screw on the side panel adjacent to the front handle. #### **ELECTROMAGNETIC INTERFERENCE** To prevent electromagnetic interference with other equipment, all used outputs should be connected to shielded loads using shielded coaxial cables. Unused outputs should be terminated with shielded coaxial terminators or with shielded coaxial dust caps, to prevent unintentional electromagnetic radiation. All cords and cables should be less than 3m in length. #### MAINTENANCE #### REGULAR MAINTENANCE This instrument does not require any regular maintenance. On occasion, one or more of the four rear-panel fuses may require replacement. All fuses can be accessed from the rear panel. See the "FUSES" section for details. #### **CLEANING** If desired, the interior of the instrument may be cleaned using compressed air to dislodge any accumulated dust. (See the "TOP COVER REMOVAL" section for instructions on accessing the interior.) No other cleaning is recommended. #### TRIGGER DAMAGE The rear-panel TRIG input, used in the external trigger mode, is protected by a diode clamping circuit. However, the protection circuit is not foolproof, and it is possible for a grossly excessive signal to damage the trigger circuitry on the main timing control board (the 4×10 inch board on the right side of the instrument). The IC that is most likely to fail under these conditions is installed in a socket. It is a standard TTL IC in a 16-pin plastic DIP package, model 74F151 or equivalent. If you suspect that this IC has been damaged, turn off the power and replace this IC. It may be replaced by a 74F151, 74LS151, 74ALS151, or 74HCT151. ### WIRING DIAGRAMS ### WIRING OF AC POWER ## **WIRING OF DC POWER** ## PCB 158Q - LOW VOLTAGE POWER SUPPLY, 1/3 ## PCB 158Q - LOW VOLTAGE POWER SUPPLY, 2/3 ## PCB 158Q - LOW VOLTAGE POWER SUPPLY, 3/3 ### PCB 197F - HIGH VOLTAGE DC POWER SUPPLY & DISCHARGE ## PCB 183A-S AND 183A-P CAPACITOR BANKS ## PCB 156D - POLARITY CONTROL BOARD (-PN UNITS ONLY) ## PCB 104F - KEYPAD / DISPLAY BOARD, 1/3 ## PCB 104F - KEYPAD / DISPLAY BOARD, 2/3 ## PCB 104F - KEYPAD / DISPLAY BOARD, 3/3 ## MAIN WIRING (-P UNITS) # MAIN WIRING (-PN UNITS) USE 1/2" STANDOFFS P1-P3, N1-N3: 33uF,400V (P7519-ND) R7-R10: 100K MOUNT SO HS CLEARS TOP COVER MOUNT SO HS CLEARS TOP COVER POS VERSION, HAS: NEG VERSION, HAS: D2,3,4,5,7 REVERSED R14,18,21,22 = UNU SED R13,17,19,20 = ZERO D2,3,4,5,7 NORM ORIENT. R14,18,21,22 = ZERO R13,17,19,20 = UNUSED CNU R7 =NOT USED R8 =NOT USED R8 =NOT USED R2 = NOT USED R2 = NOT USED R2 = NOT USED R2 = NOT USED R2 = ROT R3 = ROT USED R4 = ROT USED R5 = ROT USED R6 = ROT USED R7 = ROT USED R7 = ROT USED R8 = ROT USED R9 R7 = NOT USED CHS GND R6 = NOT USED R5 = NOT USED R2 = NS = SHE: 3.3 OY, 3HF/AHF: 10 OY R2 = NOT USED R24, R25 = UNUSED R5 R26, R27 = 220 OY 999 CHANGES NEED ON PCB 156C: 1) R32 - R35 = 100K OY +15 V NSY (158P) CONVERTTO 286B ONCE 99H GONE (•) CHS GND 156D USE 8414K-ND 6-32 1/2 IN CH S TANDO PCB 240A, POLARITY RELAY (24V) 240 A GND 24V RLY CHANGES REQUIRED ON PCB 255E (100 kHz PRF LIM) 1. INSTALL C9 = 680pF CE R H+24 V. NO OLO CONN 6 NETWORK ONLY AVR-AHF-1/-3HE/-3HF-B-PN, -OS OPTIONAL AMP (-EA UNITS ONLY) Printe d 11-Jan-2017 Z:\mjcfiles\circuits\avr-N\avr-n.Ddb - AVR-3HF-B-PN\3HF wiring v12.sch ## PERFORMANCE CHECK SHEET