\square P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265

TEL: (315) 472-5270
FAX: (613) 226-2802

TEL: 1-800-265-6681
FAX: 1-800-561-1970
e-mail: info@avtechpulse.com http://www.avtechpulse.com/

INSTRUCTIONS

MODEL AVRH-2-B

0 TO 2000 VOLTS, 80 ns RISE TIME
HIGH PERFORMANCE PULSE GENERATOR WITH IEEE 488.2 AND RS-232 CONTROL

X BOX 5120, LCD MERIVALE OTTAWA, ONTARIO
CANADA K2C 3H4
TEL: (613) 226-5772
FAX: (613) 226-2802

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

TECHNICAL SUPPORT

Phone: 613-226-5772 or 1-800-265-6681
Fax: 613-226-2802 or 1-800-561-1970
E-mail: info@avtechpulse.com
World Wide Web: http://www.avtechpulse.com

TABLE OF CONTENTS

WARRANTY. 2
TECHNICAL SUPPORT. 2
TABLE OF CONTENTS 3
INTRODUCTION. 5
AVAILABLE OPTIONS 5
HIGH-VOLTAGE PRECAUTIONS 6
SPECIFICATIONS 7
EC DECLARATION OF CONFORMITY. 8
INSTALLATION 9
VISUAL CHECK 9
POWER RATINGS. 9
CONNECTION TO THE POWER SUPPLY 9
ENVIRONMENTAL CONDITIONS 10
LABVIEW DRIVERS 10
FUSES 11
AC FUSE REPLACEMENT 11
DC FUSE REPLACEMENT 12
FUSE RATINGS 12
FRONT PANEL CONTROLS. 13
REAR PANEL CONTROLS 15
GENERAL INFORMATION 17
BASIC PULSE CONTROL 17
TRIGGER MODES. 19
PULSE WIDTH MODES 19
GATING MODES 19
SYSTEM DESCRIPTION 20
AUDIBLE HUM 20
OPTIONAL FEATURES. 21
RACK MOUNTING, "-R5" OPTION. 21
ELECTRONIC AMPLITUDE CONTROL, "-EA" OPTION 21
PROTECTING YOUR INSTRUMENT. 22
TURN OFF INSTRUMENT WHEN NOT IN USE 22
DO NOT EXCEED 1 kHz 22
REDUCE FREQUENCY AND PULSE WIDTH. 22
USE A HIGH-IMPEDANCE LOAD. 22
OPERATIONAL CHECK. 23
PROGRAMMING YOUR PULSE GENERATOR 27
KEY PROGRAMMING COMMANDS 27
ALL PROGRAMMING COMMANDS 28
MECHANICAL INFORMATION. 30
TOP COVER REMOVAL 30
RACK MOUNTING 30
ELECTROMAGNETIC INTERFERENCE. 30
MAINTENANCE. 31
REGULAR MAINTENANCE 31
CLEANING 31
WIRING DIAGRAMS 0
WIRING OF AC POWER 0
PCB 158F - LOW VOLTAGE POWER SUPPLY, 1/3 1
PCB 158F - LOW VOLTAGE POWER SUPPLY, 2/3 2
PCB 158F - LOW VOLTAGE POWER SUPPLY, 3/3. 3
PCB 170 - HIGH-VOLTAGE POWER SUPPLY. 4
MAIN WIRING - POSITIVE UNITS (-P) 5
PERFORMANCE CHECKSHEET. 0

INTRODUCTION

The AVRH-2-B is a high performance, GPIB and RS232-equipped instrument capable of generating 2000 V into loads of $10 \mathrm{k} \Omega$ or higher, at repetition rates up to 1 kHz . The output pulse width is variable from 200 to 2500 ns , and the sync delay is variable up to ± 1.0 seconds. The rise time is fixed at less than 80 ns .

Instruments with the "-P" model suffix can generate 0 to +2000 V , whereas instruments with the "-N" model suffix can generate 0 to -2000V. Instruments with the "-PN" suffix can generate both polarities.

The AVRH-2-B is a highly flexible instrument. Aside from the internal trigger source, it can also be triggered or gated by external TTL-level signals. A front-panel pushbutton or a computer command can also be used to trigger the instrument.

The AVRH-2-B features front panel keyboard and adjust knob control of the output pulse parameters along with a four line by 40-character backlit LCD display of the output amplitude, pulse width, pulse repetition frequency, and delay. The instrument includes memory to store up to four complete instrument setups. The operator may use the front panel or the computer interface to store a complete "snapshot" of all key instrument settings, and recall this setup at a later time.

This instrument is intended for use in research and development laboratories.

AVAILABLE OPTIONS

The AVRH-2-B is available with the follow option:
-EA Option: the amplitude can be controlled by an externally generated 0 to +10 V analog control voltage.
-R5 Option: This is the optional rack-mounting kit. The R5 rack-mount kit may also be ordered separately.

HIGH-VOLTAGE PRECAUTIONS

\$ CAUTION: This instrument provides output voltages as high as ± 2000 Volts, so extreme caution must be employed when using this instrument. The instrument should only be used by individuals who are thoroughly skilled in high voltage laboratory techniques. The following precaution should always be observed:

1. Keep exposed high-voltage wiring to an absolute minimum.
2. Wherever possible, use shielded connectors and cabling.
3. Connect and disconnect loads and cables only when the instrument is turned off.
4. Keep in mind that all cables, connectors, oscilloscope probes, and loads must have an appropriate voltage rating.
5. Do not attempt any repairs on the instrument, beyond the fuse replacement procedures described in this manual. Contact Avtech technical support (see page 2 for contact information) if the instrument requires servicing.

SPECIFICATIONS

Model ${ }^{1}$:	AVRH-2-B
Amplitude ${ }^{\text {2 }}$	0 to 2000 Volts (to $\mathrm{R} \geq 10 \mathrm{k} \Omega$)
Rise time:	$\leq 80 \mathrm{~ns}$
Fall time:	$\leq 80 \mathrm{~ns}$
Pulse width:	200 ns to 2.5 us
PRF:	internal trigger: 1 Hz to 1 kHz external trigger: 0 Hz to 1 kHz
Duty cycle (max):	0.25 \%
Polarity ${ }^{3}$:	Positive or negative or both (specify)
GPIB and RS-232 control ${ }^{1}$:	Yes (standard on -B units)
LabView Drivers:	Check http://www.avtechpulse.com/labview for availability and downloads
Propagation delay:	$\leq 200 \mathrm{~ns}$ (Ext trig in to pulse out)
Jitter (Ext trig in to pulse out):	$\pm 100 \mathrm{ps} \pm 0.03 \%$ of sync delay
Trigger required (ext trig mode):	Mode A: + 5 Volts, 50 ns or wider (TTL) Mode B: + 5 Volts, PW ${ }_{\text {IN }}=$ PWout (TTL)
Sync delay:	Variable 0 to ± 1.0 seconds (sync out to pulse out)
Sync output:	+ 3 Volts, 100 ns , will drive 50 Ohm loads
Gated operation:	Synchronous or asynchronous, active high or low, switchable. Suppresses triggering when active.
Connectors:	Out: SHV ${ }^{4}$ Trig, Sync, Gate: BNC
Power requirements:	100-240 Volts, $50-60 \mathrm{~Hz}$
Dimensions (HxW x D):	$100 \mathrm{~mm} \times 430 \mathrm{~mm} \times 375 \mathrm{~mm}$ (3.9 " $\times 17$ " $\times 14.8$ ")
Chassis material:	cast aluminum frame and handles, blue vinyl on aluminum cover plates
Mounting:	Any
Temperature range:	$+5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

[^0]
EC DECLARATION OF CONFORMITY

We
Avtech Electrosystems Ltd.
P.O. Box 5120, LCD Merivale

Ottawa, Ontario
Canada K2C 3H4
declare that this pulse generator meets the intent of Directive 89/336/EEC for Electromagnetic Compatibility. Compliance pertains to the following specifications as listed in the official Journal of the European Communities:

EN 50081-1 Emission
EN 50082-1 Immunity
and that this pulse generator meets the intent of the Low Voltage Directive 72/23/EEC as amended by 93/68/EEC. Compliance pertains to the following specifications as listed in the official Journal of the European Communities:

EN 61010-1:2001 Safety requirements for electrical equipment for measurement, control, and laboratory use

INSTALLATION

VISUAL CHECK

After unpacking the instrument, examine to ensure that it has not been damaged in shipment. Visually inspect all connectors, knobs, liquid crystal displays (LCDs), and the handles. Confirm that a power cord, a GPIB cable, and two instrumentation manuals (this manual and the "Programming Manual for -B Instruments") are with the instrument. If the instrument has been damaged, file a claim immediately with the company that transported the instrument.

POWER RATINGS

This instrument is intended to operate from 100-240 V, 50-60 Hz.
The maximum power consumption is 57 Watts. Please see the "FUSES" section for information about the appropriate AC and DC fuses.

This instrument is an "Installation Category II" instrument, intended for operation from a normal single-phase supply.

CONNECTION TO THE POWER SUPPLY

An IEC-320 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket. The other end of the detachable power cord plugs into the local mains supply. Use only the cable supplied with the instrument. The mains supply must be earthed, and the cord used to connect the instrument to the mains supply must provide an earth connection. (The supplied cord does this.) The table below describes the power cord that is supplied with this instrument, depending on the destination region:

Destination Region	Description	Volex (http://www.volex.com) Part Number	Newark (http://www.newark.com) Stock Number
Continental Europe	European CEE 7/7 "Schuko" $230 \mathrm{~V}, 50 \mathrm{~Hz}$	$17850-\mathrm{C} 3-326$	44 F 1841
United Kingdom	BS 1363, 230V, 50 Hz	$17962-\mathrm{C} 3-10$	84 F 1025
Switzerland	SEV 1011, 230V, 50 Hz	$2102 \mathrm{H}-\mathrm{C} 3-10$	93 F 2452
Israel	SI 32, 220V, 50 Hz	$2115 \mathrm{H}-\mathrm{C} 3-10$	04 F 1115
North America, and all other areas	NEMA 5-15, 120V, 60 Hz	$17250-\mathrm{B} 1-10$	36 F 1255

ENVIRONMENTAL CONDITIONS

This instrument is intended for use under the following conditions:

1. indoor use;
2. altitude up to 2000 m ;
3. temperature $5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$;
4. maximum relative humidity 80% for temperatures up to $31^{\circ} \mathrm{C}$ decreasing linearly to 50% relative humidity at $40^{\circ} \mathrm{C}$;
5. Mains supply voltage fluctuations up to $\pm 10 \%$ of the nominal voltage;
6. no pollution or only dry, non-conductive pollution.

LABVIEW DRIVERS

A LabVIEW driver for this instrument is available for download on the Avtech web site, at http://www.avtechpulse.com/labview. A copy is also available in National Instruments' Instrument Driver Library at http://www.natinst.com/.

FUSES

This instrument contains four fuses. All are accessible from the rear-panel. Two protect the AC prime power input, and two protect the internal DC power supplies. The locations of the fuses on the rear panel are shown in the figure below:

AC FUSE REPLACEMENT

To physically access the AC fuses, the power cord must be detached from the rear panel of the instrument. The fuse drawer may then be extracted using a small flat-head screwdriver, as shown below:

DC FUSE REPLACEMENT

The DC fuses may be replaced by inserting the tip of a flat-head screwdriver into the fuse holder slot, and rotating the slot counter-clockwise. The fuse and its carrier will then pop out.

FUSE RATINGS

The following table lists the required fuses:

Fuses	Nominal Mains Voltage	Rating	Case Size	Manufacturer's Part Number (Wickmann)	Distributor's Part Number (Digi-Key)
\#1, \#2 (AC)	$100-240 \mathrm{~V}$	0.5A, 250V, Time-Delay	$5 \times 20 \mathrm{~mm}$	1950500000	WK5041-ND
\#3 (DC)	N/A	1.6A, 250V, Time-Delay	$5 \times 20 \mathrm{~mm}$	1951160000	WK5053-ND
\#4 (DC)	N/A	0.5A, 250V, Time-Delay	$5 \times 20 \mathrm{~mm}$	1950500000	WK5041-ND

The fuse manufacturer is Wickmann (http://www.wickmann.com/).
Replacement fuses may be easily obtained from Digi-Key (http://www.digikey.com/) and other distributors.

FRONT PANEL CONTROLS

1. POWER Switch. This is the main power switch. When turning the instrument on, there may be a delay of several seconds before the instrument appears to respond.
2. OVERLOAD Indicator. When the instrument is powered, this indicator is normally green, indicating normal operation. If this indicator is yellow, an internal automatic overload protection circuit has been tripped. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a very low impedance), the protective circuit will disable the output of the instrument and turn the indicator light yellow. The light will stay yellow (i.e. output disabled) for about 5 seconds after which the instrument will attempt to re-enable the output (i.e. light green) for about 1 second. If the overload condition persists, the output will be disabled again (i.e. light yellow) for another 5 seconds. If the overload condition has been removed, the instrument will resume normal operation.

This overload indicator may flash yellow briefly at start-up. This is not a cause for concern.

Note that the output stage will safely withstand a short-circuited load condition.
3. OUT CONNECTOR. This SHV connector provides the main output signal, into load impedances of $10 \mathrm{k} \Omega$ or higher. (The panel connector will mate to King Model 17052 connector for RG58A cable.)

食
Caution: Voltages as high as $\pm 2000 \mathrm{~V}$ may be present on the center conductor of this output connector. Avoid touching this conductor. Connect to this connector using standard coaxial cable, to ensure that the center conductor is not exposed.
4. SYNC OUT. This connector supplies a SYNC output that can be used to trigger other equipment, particularly oscilloscopes. This signal leads (or lags) the main output by a duration set by the "DELAY" controls and has an approximate amplitude of +3 Volts to $R_{L}>1 \mathrm{k} \Omega$ with a pulse width of approximately 100 ns .
5. LIQUID CRYSTAL DISPLAY (LCD). This LCD is used in conjunction with the keypad to change the instrument settings. Normally, the main menu is displayed, which lists the key adjustable parameters and their current values. The "Programming Manual for -B Instruments" describes the menus and submenus in detail.
6. KEYPAD.

Control Name	Function
MOVE	This moves the arrow pointer on the display.
CHANGE	This is used to enter the submenu, or to select the operating mode, pointed to by the arrow pointer.
$\times 10$	If one of the adjustable numeric parameters is displayed, this increases the setting by a factor of ten.
$\div 10$	If one of the adjustable numeric parameters is displayed, this decreases the setting by a factor of ten.
$+/-$	If one of the adjustable numeric parameters is displayed, and this parameter can be both positive or negative, this changes the sign of the parameter.
EXTRA FINE	This changes the step size of the ADJUST knob. In the extra- fine mode, the step size is twenty times finer than in the normal mode. This button switches between the two step sizes.
This large knob adjusts the value of any displayed numeric	
adjustable values, such as frequency, pulse width, etc. The	
adjust step size is set by the "EXTRA FINE" button.	
When the main menu is displayed, this knob can be used to move the arrow pointer.	

REAR PANEL CONTROLS

1. AC POWER INPUT. An IEC-320 C14 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket.
2. AC FUSE DRAWER. The two fuses that protect the AC input are located in this drawer. Please see the "FUSES" section of this manual for more information.
3. DC FUSES. These two fuses protect the internal DC power supplies. Please see the "FUSES" sections of this manual for more information.
4. GATE. This TTL-level (0 and +5 V) logic input can be used to gate the triggering of the instrument. This input can be either active high or active low, depending on the front panel settings or programming commands. (The instrument triggers normally when this input is unconnected). When set to active high mode, this input is pulleddown to ground by a $1 \mathrm{k} \Omega$ resistor. When set to active low mode, this input is pulledup to +5 V by a $1 \mathrm{k} \Omega$ resistor.
5. TRIG. This TTL-level (0 and +5 V) logic input can be used to trigger the instrument, if the instrument is set to triggering externally. The instrument triggers on the rising edge of this input. The input impedance of this input is $1 \mathrm{k} \Omega$. (Depending on the length of cable attached to this input, and the source driving it, it may be desirable to add a coaxial 50 Ohm terminator to this input to provide a proper transmission line termination. The Pasternack (www.pasternack.com) PE6008-50 BNC feed-thru 50 Ohm terminator is suggested for this purpose.)

When triggering externally, the instrument can be set such that the output pulse width tracks the pulse width on this input, or the output pulse width can be set independently.
6. GPIB Connector. A standard GPIB cable can be attached to this connector to allow the instrument to be computer-controlled. See the "Programming Manual for -B Instruments" for more details on GPIB control.
7. RS-232 Connector. A standard serial cable with a 25-pin male connector can be attached to this connector to allow the instrument to be computer-controlled. See the "Programming Manual for -B Instruments" for more details on RS-232 control.
8. AMP Connector. (Optional feature - active on units with the -EA option only.) The output amplitude can be set to track the voltage on this input. Zero Volts in corresponds to zero amplitude output, and +10 V in corresponds to maximum amplitude out. This mode is activated by selecting "Ext Control" on the front-panel amplitude menu, or with the "source:voltage external" command.

GENERAL INFORMATION

BASIC PULSE CONTROL

This instrument can be triggered by its own internal clock or by an external TTL trigger signal. In either case, two output channels respond to the trigger: OUT and SYNC. The OUT channel is the signal that is applied to the load. Its amplitude and pulse width are variable. The SYNC pulse is a fixed-width TTL-level reference pulse used to trigger oscilloscopes or other measurement systems. When the delay is set to a positive value the SYNC pulse precedes the OUT pulse. When the delay is set to a negative value the SYNC pulse follows the OUT pulse.

These pulses are illustrated below, assuming internal triggering and a positive delay:

Figure A

If the delay is negative, the order of the SYNC and OUT pulses is reversed:

Figure B

The next figure illustrates the relationship between the signal when an external TTLlevel trigger is used:

Figure C

As before, if the delay is negative, the order of the SYNC and OUT pulses is reversed.
The last figure illustrates the relationship between the signal when an external TTL-level trigger is used in the $\mathrm{PW}_{\mathbb{I N}}=P W_{\text {оит }}$ mode. In this case, the output pulse width equals the external trigger's pulse width (approximately), and the delay circuit is bypassed:

Figure D

The delay, pulse width, and frequency (when in the internal mode), of the OUT pulse can be varied with front panel controls or via the GPIB or RS-232 computer interfaces.

TRIGGER MODES

This instrument has four trigger modes:

- Internal Trigger: the instrument controls the trigger frequency, and generates the clock internally.
- External Trigger: the instrument is triggered by an external TTL-level clock on the back-panel TRIG connector.
- Manual Trigger: the instrument is triggered by the front-panel "SINGLE PULSE" pushbutton.
- Hold Trigger: the instrument is set to not trigger at all.

These modes can be selected using the front panel trigger menu, or by using the appropriate programming commands. (See the "Programming Manual for -B Instruments" for more details.)

PULSE WIDTH MODES

This instrument has two pulse width modes:

- Normal: the instrument controls the output pulse width.
- $\mathrm{PW}_{\text {IN }}=$ PW ${ }_{\text {Out: }}$ the output pulse width equals the pulse width of the trigger signal on the "TRIG" connector. The instrument must be in the external trigger mode.

These modes can be selected using the front panel pulse width menu, or by using the appropriate programming commands. (See the "Programming Manual for -B Instruments" for more details.)

GATING MODES

Triggering can be suppressed by a TTL-level signal on the rear-panel GATE connector. The instrument can be set to stop triggering when this input high or low, using the frontpanel gate menu or the appropriate programming commands. This input can also be set to act synchronously or asynchronously. When set to asynchronous mode, the GATE will disable the output immediately. Output pulses may be truncated. When set to synchronous mode, the output will complete the full pulse width if the output is high, and then stop triggering. No pulses are truncated in this mode.

SYSTEM DESCRIPTION

The AVRH-2-B generates a 2000 Volt pulse by first generating a 500 Volt pulse of the desired width. This pulse is then supplied to a $x 4$ transformer which increases the output amplitude to 2000 Volts (to $R_{L}>10 \mathrm{k} \Omega$). DC potentials as high as 600 Volts are employed in the generation of the 500 Volt pulse so extreme caution must be employed when repairing this instrument. It is therefore highly recommended that the unit be returned to Avtech for all repairs beyond the replacement of the rear-panel fuses.

AUDIBLE HUM

Note that when the amplitude or PRF or PW are increased, the output stage of the unit may emit an audible hum. This noise is normal and is due to the step-up transformer in the output stage.

OPTIONAL FEATURES

RACK MOUNTING, "-R5" OPTION

A rack mounting kit is available. The "-R5" rack mount kit may be installed after first removing the one Phillips screw on the side panel adjacent to the front handle.

ELECTRONIC AMPLITUDE CONTROL, "-EA" OPTION

The output amplitude can be set to track the voltage on this input. Zero Volts in corresponds to zero amplitude output, and +10 V in corresponds to maximum amplitude out. This mode is activated by selecting "Ext Control" on the front-panel amplitude menu, or with the "source:voltage external" command. For -PN units, the output polarity remains at its last setting before the amplitude is switched to the external amplitude mode.

PROTECTING YOUR INSTRUMENT

TURN OFF INSTRUMENT WHEN NOT IN USE

The lifetime of the switching elements in the pulse generator module is proportional to the running time of the instrument. For this reason the prime power to the instrument should be turned off when the instrument is not in use. In the case of failure, the switching elements are easily replaced following the procedure described in a following section.

DO NOT EXCEED 1 kHz

The output stage may be damaged if triggered by an external signal at a pulse repetition frequency greater than 1 kHz .

REDUCE FREQUENCY AND PULSE WIDTH

In general, the lifetime of the output stage will be extended if the pulse repetition frequency and the pulse width are kept as low as possible.

USE A HIGH-IMPEDANCE LOAD

The load impedance must be $10 \mathrm{k} \Omega$ or higher. The output stage may be damaged if lower impedances are used.

OPERATIONAL CHECK

This section describes a sequence to confirm the basic operation of the instrument. It should be performed after receiving the instrument. It is a useful learning exercise as well.

Before proceeding with this procedure, finish reading this instruction manual thoroughly. Then read the "Local Control" section of the "Programming Manual for -B Instruments" thoroughly. The "Local Control" section describes the front panel controls used in this operational check - in particular, the MOVE, CHANGE, and ADJUST controls.

1. Connect the pulse generator to a sampling oscilloscope as shown above. Note that:
a) EXTREME CAUTION SHOULD BE FOLLOWED WHEN USING THIS INSTRUMENT AS IT GENERATES OUTPUT PULSE AMPLITUDES AS HIGH AS 2000 VOLTS.
b) The TRIG output channel provides TTL level signals (approximately 0 and +3 V). To avoid overdriving the TRIG input channel of some scopes, a 20 dB attenuator may be required at the input to the scope trigger channel.
c) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 50 MHz . Also, the coaxial cable between the SHV output connector and the load should not exceed about 0.5 meters (or the rise time will be degraded).
d) The load impedance should not be less than $10 \mathrm{k} \Omega$ as this will result in possible damage to the output stages. For test purposes, the test load should be greater than $10 \mathrm{k} \Omega$. To protect the oscilloscope, two high-voltage resistors should be
used to form a resistive-divider-type load. By using a $10 \mathrm{k} \Omega$ and a $1 \mathrm{k} \Omega$ resistor, as shown above, the voltage measure by the oscilloscope will be reduced by a factor of 11, compared to the voltage at the output connector. The $10 \mathrm{k} \Omega$ resistance (R1) must have a voltage rating of at least 2000 Volts, and the $1 \mathrm{k} \Omega$ resistance (R2) must have a voltage rating of at lest 200 Volts. (Multiple resistors may be used in series to achieve the required resistance with the required voltage rating.)

Factory tests are conducted using a single Ohmite $1 \mathrm{k} \Omega$, 2 Watt ceramic composition resistor (part number OY102K) for R2. Ten of these resistors are connected in series to form R1. These resistors are available from Digi-Key (http://www.digi-key.com) and other distributors.
e) Set the oscilloscope to trigger externally with the vertical setting at $50 \mathrm{~V} / \mathrm{div}$ and the horizontal setting at $100 \mathrm{~ns} / \mathrm{div}$.
2. Turn on the AVRH-2-B. The main menu will appear on the LCD.
3. To set the AVRH-2-B to trigger from the internal clock at a PRF of 100 Hz :
a) The arrow pointer should be pointing at the frequency menu item. If it is not, press the MOVE button until it is.
b) Press the CHANGE button. The frequency submenu will appear. Rotate the ADJUST knob until the frequency is set at 100 Hz .
c) The arrow pointer should be pointing at the "Internal" choice. If it is not, press MOVE until it is.
d) Press CHANGE to return to the main menu.
4. To set the delay to 100 ns :
a) Press the MOVE button until the arrow pointer is pointing at the delay menu item.
b) Press the CHANGE button. The delay submenu will appear. Rotate the ADJUST knob until the delay is set at 100 ns .
c) The arrow pointer should be pointing at the "Normal" choice. If it is not, press MOVE until it is.
d) Press CHANGE to return to the main menu.
5. To set the pulse width to 500 ns :
a) Press the MOVE button until the arrow pointer is pointing at the pulse width menu item.
b) Press the CHANGE button. The pulse width submenu will appear. Rotate the ADJUST knob until the pulse width is set at 500 ns .
c) The arrow pointer should be pointing at the "Normal" choice. If it is not, press MOVE until it is.
d) Press CHANGE to return to the main menu.
6. At this point, nothing should appear on the oscilloscope.
7. To enable the output:
a) Press the MOVE button until the arrow pointer is pointing at the output menu item.
b) Press the CHANGE button. The output submenu will appear.
c) Press MOVE until the arrow pointer is pointing at the "ON" choice.
d) Press CHANGE to return to the main menu.
8. To change the output amplitude:
a) Press the MOVE button until the arrow pointer is pointing at the amplitude menu item.
b) Press the CHANGE button. The amplitude submenu will appear. Rotate the ADJUST knob until the amplitude is set at +1000 V (or -1000 V for "-N" models).
c) Observe the oscilloscope. You should see 500 ns wide, 1000 V pulses. (Note that the resistor-divider load reduces the oscilloscope voltage by a factor of 11.) If you do not, you may need to adjust the delay setting to a value more compatible with your sampling oscilloscope. Repeat step 4 if required. You may also need to adjust the sampling scope controls.
d) Rotate the ADJUST knob. The amplitude as seen on the oscilloscope should vary. Return it to 1000 V .
e) ("-PN" units only) Press the +/- button on the front panel. The amplitude as seen on the oscilloscope should flip polarity, to -1000 V .
f) Press CHANGE to return to the main menu.
9. Try varying the pulse width, by repeating step (5). As you rotate the ADJUST knob, the pulse width on the oscilloscope will change. It should agree with the displayed
value.
This completes the operational check.

PROGRAMMING YOUR PULSE GENERATOR

KEY PROGRAMMING COMMANDS

The "Programming Manual for -B Instruments" describes in detail how to connect the pulse generator to your computer, and the programming commands themselves. A large number of commands are available; however, normally you will only need a few of these. Here is a basic sample sequence of commands that might be sent to the instrument after power-up:

${ }^{*}$ rst	(resets the instrument)
trigger:source internal	(selects internal triggering)
frequency 1000 Hz	(sets the frequency to 1000 Hz)
pulse:width 500 ns	(sets the pulse width to 500 ns)
pulse:delay 20 ns	(sets the delay to 20 ns)
volt:ampl 1500	(sets the amplitude to +1500 V)
	("-N" units should use "volt:ampl -1500)
output on	(turns on the output)

For triggering a single event, this sequence would be more appropriate:

*rst	(resets the instrument)
trigger:source hold	(turns off all triggering)
pulse:width 500 ns	(sets the pulse width to 500 ns)
output on	(turns on the output)
volt:ampl 1500	(sets the amplitude to +1500 V)
	("-N" units should use "volt:ampl -1500)
trigger:source immediate	(generates a single non-repetitive trigger event)
trigger:source hold	(turns off all triggering)
output off	(turns off the output)

To set the instrument to trigger from an external TTL signal applied to the rear-panel TRIG connector, use:

*rst	(resets the instrument)
trigger:source external	(selects internal triggering) pulse:width 500 ns
(sets the pulse width to 500 ns)	
pulse:delay 1 us	(sets the delay to 1 us)
volt:ampl 1500	(sets the amplitude to +1500 V)
	("-N" units should use "volt:ampl -1500)
output on	(turns on the output)

To set the output pulse width to track the trigger pulse width in external mode, use:

*rst	(resets the instrument)
trigger:source external	(selects external triggering) pulse:width in (PWout = PW IN)
output on	(turns on the output)
volt:ampl 1500	(sets the amplitude to +1500 V)
	("-N" units should use "volt:ampl -1500)

These commands will satisfy 90% of your programming needs.

ALL PROGRAMMING COMMANDS

For more advanced programmers, a complete list of the available commands is given below. These commands are described in detail in the "Programming Manual for -B Instruments". (Note: this manual also includes some commands that are not implemented in this instrument. They can be ignored.)

Keyword
LOCAL
OUTPut:
:[STATe]
:PROTection
:TRIPped?
REMOTE
[SOURce]:
:FREQuency [:CW | FIXed]
[SOURce]:
:PULSe
:PERiod
:WIDTh
:DCYCle
:HOLD
:DELay
:GATE
:TYPE
:LEVel
[SOURce]:
:VOLTage
[:LEVel]
[:IMMediate]
[:AMPLitude]
:PROTection
:TRIPped?
STATUS:
:OPERation
:[EVENt]?
:CONDition? :ENABle :QUEStionable :[EVENt]? :CONDition?
<numeric value> | EXTernal
Parameter \quad Notes
<boolean value>
[query only]
<numeric value>
<numeric value>
<numeric value> | IN
<numeric value> WIDTh | DCYCle <numeric value>

ASYNC|SYNC
HIgh | LOw
[query only]
[query only, always returns "0"]
[query only, always returns "0"] [implemented but not useful]
[query only, always returns "0"]
[query only, always returns "0"]

MECHANICAL INFORMATION

TOP COVER REMOVAL

If necessary, the interior of the instrument may be accessed by removing the four Phillips screws on the top panel. With the four screws removed, the top cover may be slid back (and off).

Always disconnect the power cord before opening the instrument.
There are no user-adjustable internal circuits. For repairs other than fuse replacement, please contact Avtech (info@avtechpulse.com) to arrange for the instrument to be returned to the factory for repair.

㐱 Caution: High voltages are present inside the instrument during normal operation. Do not operate the instrument with the cover removed.

RACK MOUNTING

A rack mounting kit is available. The -R5 rack mount kit may be installed after first removing the one Phillips screw on the side panel adjacent to the front handle.

ELECTROMAGNETIC INTERFERENCE

To prevent electromagnetic interference with other equipment, all used outputs should be connected to shielded loads using shielded coaxial cables. Unused outputs should be terminated with shielded coaxial terminators or with shielded coaxial dust caps, to prevent unintentional electromagnetic radiation. All cords and cables should be less than $3 m$ in length.

MAINTENANCE

REGULAR MAINTENANCE

This instrument does not require any regular maintenance.
On occasion, one or more of the four rear-panel fuses may require replacement. All fuses can be accessed from the rear panel. See the "FUSES" section for details.

CLEANING

If desired, the interior of the instrument may be cleaned using compressed air to dislodge any accumulated dust. (See the "TOP COVER REMOVAL" section for instructions on accessing the interior.) No other cleaning is recommended.

PCB 158F - LOW VOLTAGE POWER SUPPLY, 1/3

PCB 158F - LOW VOLTAGE POWER SUPPLY, 2/3

PCB 158F - LOW VOLTAGE POWER SUPPLY, $3 / 3$

PCB 170 - HIGH-VOLTAGE POWER SUPPLY

MAIN WIRING - POSITIVE UNITS (-P)

PERFORMANCE CHECKSHEET

[^0]: 1. Provides IEEE-488.2 GPIB and RS-232 control of amplitude, pulse width, polarity, PRF and delay.
 2. For electronic control $(0$ to $+10 \mathrm{~V})$ of amplitude, add the suffix "EA" to the model number. These units also include the standard front-panel controls.
 3. Indicate desired polarity by suffixing model number with -P or - N (i.e. positive or negative) or -PN for dual polarity option.
 4. MHV or HN output connectors can also be provided. To specify, suffix the model number with -MHV or -HN as required.
