AVTECH ELECTROSYSTEMS LTD.
NANOSECOND WAVEFORM ELECTRONICS SINCE 1975
\square P.O.BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: (315) 472-5270
FAX: (613) 226-2802

TEL: 1-800-265-6681 FAX: 1-800-561-1970 U.S.A. \& CANADA
e-mail: info@avtechpulse.com

X BOX 5120 STN. F OTTAWA, ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772 FAX: (613) 226-2802

INSTRUCTIONS

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1
BASIC TEST SET-UP (PULSE MODE)

GENERAL OPERATING INSTRUCTIONS

1) The basic operation of the amplifier was confirmed using the pulse mode test arrangement shown in Fig. 1.
2) The AV-149 amplifier requires a prime power of ± 15 VDC (100 mA max).
3) The bias voltage for the APD may be varied from about +20 Volts to +228 using the 10 turn "BIAS ADJ" screw. Note clockwise rotation of the screw reduces the bias voltage while counterclockwise rotation increases the bias voltage. At the time of shipping this voltage was set to +180 Volts (as measured at the red "BIAS" banana terminal adjacent to the "BIAS ADJ" screw). CAUTION: The diode supplied with the unit has a breakdown voltage of 190 Volts.
4) The connecterized detector diode may be removed by removing the 2 Phillips 2-56 screws which affix the diode assembly to the $2 \times 5 \mathrm{~cm}$ aluminum mounting plate in the side of the amplifier. The diode may then be removed from the socket by gently pulling the diode package away from the amplifier chassis. The aluminum mounting plate may be removed by loosening the 8-32 nuts (4) then removing the 8-32 machine screws (2). Other APD detector diodes may be inserted into the socket. The pin connections are shown in Fig. 2.
5) The DC offset on the output may be varied from -1.0 to +1.0 Volt using the ten turn OS control. Clockwise rotation of the pot shifts the offset more negative. At the time of shipping the offset was set to zero.
6) To test the AV-149 in a sweep frequency mode (DC to 600 MHz) the AVK-AV-C and the sampling scope should be replaced by a network analyzer.
7) CAUTION: The amplifier will be damaged if the anode and cathode connections are reversed. Also, the photodiode must not be installed or removed once the $\pm 15 \mathrm{~V}$ prime power is on and the bias voltage on the diode must not exceed the breakdown voltage (of 190 Volts). The warranty does not apply to failures resulting from abuses related to the above.
8) The leads of the photo diode should not be inserted more than 1.0 cm into the socket.
9) The ± 15 VDC supply should be turned off when installing or removing the photo diode.
10) The MITSUBISHI PD1002 diode with the FC connector has been discontinued and so was replaced by an EG\&G C30902E diode (Case "Q"). A copy of the diode data sheet is enclosed.
11) For additional information:

Tel: (613) 226-5772
Fax: (613) 226-2802

Fig. 2 DIODE SOCKET PIN CONNECTIONS

1) ANODE
(3) CASE
(2) CATHODE

High Speed Solid State Detectors for Fiber Optic and Very Low Light-Level Applications

RCA Type C30902E avablanche photodiode utilizes a silicon detector chip fabricated with a double-diffused "reach-through" structure. This structure provides high responsivity between 400 and 1000 nanometers as well as extremely fast rise-and falltimes at all wavelengths. Because the fall-time characteristics have no "tail", the responsivity of the device is independent of modulation frequency up to about 800 MHz . The detector chip is hermetically-sealed behind a flat glass window in a modified TO-18 pacmage. The useful diameter of the photosensitive surface is 0.5 mm .
RCA Type C30921E utilizes the same silicon detector chip as the C30902E, but in a package containing a lightpipe which allows efficient confling of light to the detector from either a focussed spot or an optical fiber up to 0.25 mm in diameter. The internal end of the lightpipe is close enough to the detector surface to allow all of the illumination exiting the lightpipe to fall within the active-area of the detector. The hermetically-sealed TO-18 package allows fibers to be epoxied to the end of the lightpipe to minimize signal losses without fear of endangering detector stability.
The C30902E and C30921E are designed for a wide variety of uses including optical communications at data rates to $1 \mathrm{GBit} /$ second, laser rangefinding, and any other applications requiring high speed and/or high responsivity.
The C30902S and C30921S are selected C30902E and C30921E photodiodes having extremely low noise and low bulk dark-tarrent. They are intended for ultra-low light level applications (optical power less than 1 pW) and can be used in either their nor-

- High Quantum Efficiency
77% Typical at 830 mm
n C30902S and C30921S in Geiger Mode:
- Single-Photon Detection Probability to 50\%
- Low Dark-Count Rate at 5\% Detection

Probability - Typically
15,000/second at $+22^{\circ} \mathrm{C}$
$350 /$ second at $-25^{\circ} \mathrm{C}$

- Count Rates to $2 \times 10^{6} /$ second
- Hermetically Sealed Package
- Low Noise at Room Temperature
- C30902E, C30921E -
$2.3 \times 10^{-23} \mathrm{~A} / \mathrm{Hz}^{1 / 2}$
- C30902S, C30921S -
$1.1 \times 10^{-13} \mathrm{~A} / \mathrm{Hz}^{1 / 2}$
■ High Responsivity -
Internal Avalanche Gains in Excess of 150
- Spectral Response Range - (10% Points) 400 to 1000 nm
- Time Response - Typically 0.5 ns
- Wide Operating Temperature Range -$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
mall linear mode ($\mathrm{V}_{\mathrm{R}}<\mathrm{V}_{\mathrm{BR}}$) at gains up to 250 or greater. or as photon counters in the "Geiger" mode ($\mathrm{V}_{\mathrm{R}}>\mathrm{V}_{\mathrm{BR}}$) where a single photoelectron may trigger an avalanche pulse of about 10^{8} carriers. In this mode, no amplifiers are necessary and single-photon detection probabilities of up to approximately 50% are possible.

Photon-counting is also advantageous where gating and coincidence techniques are employed for signal retrieval.

Optical Characteristics

C30902E, C30902S (Figure 13)

Photosensitive Surface:

Maximum Ratings, Absolute-Maximum Values

Reverse Current at $22^{\circ} \mathrm{C}$:
Average value, continuous operation
Peak value (For 1 second duration, non-repatitive. 1 mA
Forward Current, I_{F} at $22^{\circ} \mathrm{C}$.
Average value, continuous operation. \qquad 5 mA
Peak value (For 1 second duration, non-repetitive) 50 mA
Maximum Total Power
Dissipation at $22^{\circ} \mathrm{C}$.
60
mW
Ambient Temperature -
Storage, $\mathrm{T}_{\text {mig }} \ldots . ~$
to to $100 \quad{ }^{\circ} \mathrm{C}$
Operating, $\mathrm{T}_{\mathrm{A}} \ldots \ldots . ~-~ 40 ~ 10 ~+70 ~{ }^{\circ} \mathrm{C}$
Soldering:
For 5 seconds.................................... 200

4-10118
Fig. 1 Typical Spectral Responsivity at $22^{\circ} \mathrm{C}$

4-412
Fig. 2 Typical Quantum Efficiency vs Wavelength

Electrical Characteristics ${ }^{1}$ at $\mathrm{T}_{\mathrm{A}}=22^{\circ} \mathrm{C}$

1 At the $D C$ reverse operating voltage V_{R} supplied with the device and a light spot diameter of 0.25 $\mathrm{mm}(\mathrm{C} 30902 \mathrm{E}, \mathrm{S}$) or 0.10 mm (C30921E, S). Note that a specific value of V_{R} is supplied with each device. When the photodiode is operated al this voltage, the device will meet the electrical characteristic limits shown above. The voltage value will be within the range of 180 to 250 volts.

2 The theoretical expression for shot noise current in an avalanche photodiode is $i_{n}=\left(2 q\left(I_{d s}+\right.\right.$ $\left(I_{d b} M^{2}+P_{u} R M\right)$ F) $\left.B_{w}\right)^{1 / 2}$ where q is the electronic charge. $I_{\text {dx }}$ is the dark surface current, $I_{\text {fl }}$ is the dark bulk current, F is the excess noise factor, M is the gain, P_{0} is the optical power on the device. and B_{w} is the noise bandwidth. For these devices
$F=0.98(2-1 / M)+0.02 \mathrm{M}$. (Reference: PP Webb. R/ McIntyre, JJ Conradi. "RCA Review", Vol. 35, p. 334. (1974).

3 The C30902S and C30921S can be operated al a substantially higher Detection Probabilities. See Appendix.

4 After-Pulse occurring 1 microsecond to 60 secodds after main pulse.

노ำ24
Fig. 3 Typical Noise Current vs Gain

Fig. 4 Typical Responsivity at 830 nm vs Operating Voltage

Note: Operation below 145 volts is not recommended. since the device is not fully depleted below this value.

Fig. 5 Typical Gain-Bandwidth Product vs Gain

Fig. 6 Typical Dark Current vs Operating Voltage ($V<V_{B R}$)

Fig. 7 Avalanche Photodiode Response to a 100 ps Laser Pulse as Measured With a 350 ps Sampling Head. (Horizontal Axis: 200 ps /Division)
Normal Linear Mode $V_{R}<V_{B R}$

Fig. 8 Gelger Mode, Photoelectron Detection Probability vs Voltage Above $\mathrm{V}_{\mathrm{BR}}\left(\mathrm{V}_{\mathrm{R}}>\mathrm{V}_{\mathrm{BR}}\right)$

Fig. 9 Passively Quenched Circuit and Resulting Pulsc Shape

Fig. 10 Load Line for C30921S in the Geiger Mode

Fig. 11 Typical Dark Count vs Temperature at 5% Photon (830 nm) Detection Efficiency

Fig. 12 Chance of an After-Pulse Within the Next 100 ns vs Delay-Time in an Actively Quenched Circuit.
(Typical for C30902S, C30921S at $\mathrm{V}_{\mathrm{BR}}+25$)

Modified TO-18 Package

Dimensions in millimeters. Dimensions in paredtheses are in inches.
Note: Optical distance is defined as the distance from the surface of the silicon chip to the front surface of the window.

Fig. 13 Dimensional Outline -C30902E, C.30902S

TO-18 Package

Dimensions in millimeters. Dimensions in parestheses are in inches.

Fig. 14 Dimensional Outline -C.30921E, C30921S

Fig. 15 Cutaway of the RCA C.30921E. C30921S

Appendix

-
 Operation of the C30902S \& C30921S in the Geiger Mode
 Introduction

When biased alove the breakdown voltage, an avalanche photodiode will normally conduct a large curreat. However, if the ciurrent is such that the current is limited to loss than a particular value (about $50 \mu \mathrm{~A}$ for these diodes). the current is unstable and can switch off by itself. The explanation of this behaviour is that the number of carricrs in the avalanche region at any one time is
 to ecro, the current must stop. It subsequently remains off until the avalanche pulse is retriggered by a bulk-or photo-generated carrier.
The C30902S and C30921S are selected to have small bulk-generated dark-current. This makes them sultable for low-noise operatinn helow $V_{G K}$ or of photon-counting above $V_{A R}$ in the Geiger mode. In this so-called Geiger mode, a single photnalactron (or thermally-generated electron) may triggar an avalanche pulse which distharges the photodiode from its reverse voltage \mathbf{V}_{n} to a voltage slightly below $V_{0 u}$. The probability of this avalanche occuring is shown in Figure 8 as the "Photoclectron Delection Probability" and as can be seen, it incrabsas with reverse voltage \mathbf{V}_{h}. For a given value of $\mathrm{V}_{\mathrm{R}}-\mathbf{V}_{\mathrm{n}}$, the Photoclectron Detection Probability is independent of temperature. To determine the Fhoton Detection Probability, it is necossary to multiply the Phntnelect:Irun Delection Probability by the Quantum Efficianciy. which is shown in Figure 2. the Quantum Elficiency also is relatively independent of temperaturc, except near the 1000 nm cutull.
The Caugu2S and C30921S can be used in the Getiger mode using either "passive" or "active" pulse quenching circuits. The advanlages and disadvantages of each are discussed below.
Passive-Quenching Circuil
The simplest, and in many cases a perfectly adequate method of quenching a breakdown pulse, is through the use of a currentlimiling load resistor. An exumplu of such a "passive" quenching circuit is shown In Figure 9. The load-line of the circuit is shown in Figure 10. To be in the conducting atate at $V_{R R}$ two conditions must be met:

1. The avalanche must have been triggered by either a photoclectron or a bulk-generated electron entering the avalanche region of the diode. (Note: holes ace inefficient at starting avalanchas in silicon.) The probability of an avalanche baing initiated is discussed above.
2. To continus to be in the conducting state, a suffiriently large current, called the latching current $I_{\text {Late. }}$ must be passing through the device oo that there is always an electron or hole in the avalanche region. Typically in the C30yors and C30021S, $I_{I_{A T H}}=50 \mu \mathrm{~A}$. for currents $\left(V_{R}-V_{B R}\right) / R_{L}$ much greater thant $1_{\text {LATCH, }}$ the diode remains conducting. If the current $\left(V_{R^{-}}\right.$ $V_{B R} / / R_{1}$ is much less than $I_{\text {Litch. }}$ the diode swilches almost immediately to the non-conducting state. If $\left(V_{R}-V_{\mathrm{Dn}}\right) / R_{\mathrm{L}}$ is approximately equal to $I_{\text {Lurch }}$, then the diode will switch at ain arbitrary time from the conducting to the non-conducting state depending on when the number of electrons and holes in the avalanche region statistically fluctuates to zero.
When R_{L} is large. the photodiode is normally nonconducting, and the operating point is at $V_{R}-I_{d} R_{L}$ in the non-conducting state. Following an avalanche breakdown, the device recharges to the voltage $V_{R}-L_{L} R_{L}$ with the time constant $C R_{L}$ where C is the total devica capacitance including stray capaclance. Using $\mathrm{C}=1.6 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{L}}=200.2 \mathrm{KQ}$ a recharge time constant of .32 microseconds is calculated, in rearonable agreament wilh observation as shown in Figure 9. As is also evident from Figure $\theta_{\text {, the }}$
rise-time is fast. 5 to 50 nanoseconds. decreases. as $V_{K}-V_{n K}$ increases, and is vary dapendent on the capacitances of the load resisisturs. leatds, ctic. The jitter at the half-voltage point is typically the same order of magnitude as the risc-time. For timing purposes where it is impariant to have minimum jitter, the lowest possible threstuold al the rising pulse should be used.

Active-Quenching Cirruil

Until the C30902S or C30921S is recharged, the probahility of detecting anoller incoming photoelectron is relatively low. To avoid an excessive dand-lime when oparaling at a large voltage above $V_{u n}$. an "aclively quenchad" circuit can be used. The cirtuit temporarily drops the bias voltage for a traction of a microsecond folluwing the detection of an avalanche discharge. This delay time allows all ulectrons and holes tn bo collected. including most of those temporarily "Irapped" at various impurity uites in the silicon. When the higher voltage is reapplied, there are no electrons in the depletion region to triggur another uvalanche or latch the diode. Rencharging can now be very rapir through a small load resistor. Alternatively, the bias voltage can be maintained but the load resistor is replaced by a transistor which is kept off for a short time atter an avalanche. and then furnad on for a period sufficient to recharge the photodiode.

After-Pulsing

An after-pulse is an avalanche breaknesion julse which follows a photon-generated pulse nad is induced by it. An after-pulse is usually caused by one of the approximately 10 ncarrinrs which pass through the diade berause of the lirst avalanchc. This electrom or holy is caplured and trapped at some impurity site in the silicon, as previously described. Whan this charge-carricr is liberated, usually in luss tham 100 ananoseconds but sometimes several milliseconds later. it may start another avalancite. The probability of an after-pulae necurring more than one microsecond latar is typically less than 2% at 2 volts above $V_{\text {uk, }}$ using the circuit shown is Figure 9. After-pulsing incrases with bias voltage. If it is namensary to reduce after-pulses, it is recommanded that une kuep $V_{R} \cdot V_{a R}$ low, use an actively-quenched circuit with a long delay-time (sen Figura 12), or a passivelyquenchad circuit with a long $R_{L} C$ constant. Stray capacitances must also be minimized. Electronic gating of the signal tan be performed in certain situations. Should after-pulses be a serious complication in a particular application, operation below $V_{u k}$ with a good amplifier might be ronsidarad.

Dark Current

Both the C30902S and C30921S have buen selected to have a low dark-count ratr. Cooling to $25^{\circ} \mathrm{C}$ can reduce this by a factor of 50, since the dependence of dark-count rate on temperature is exponential.
The Uark-Count increasas with voltage following the same curve as the Photoelectron Detection Probability until a voltage where after-pulsing is responsible for a fuadback inechanism which dramatically inereasest the dark-count rate. This maximum voltage is circuit dependent, and is not warranted other than the values listed on page 3. In most cases, with a delay time of 300 ns . the diode can be used effectively at V_{R} up to $\mathrm{V}_{\mathrm{BR}}+25 \mathrm{~V}$.
The C30902S and C30921S should not be forward bingad or, when unbiased, exposed to strong illumination. These conditions result in a greatly cachanced dark-count which reņuires up to 24 hours to raturn to its nominal value.

Detectors

C30927E	(L)	1.5	62,	25	0.5	3	3	8,

Special Purpose Avalanche Photodiode Products

Photon Counting APD Products

These detectors are processed and selected for low dark count)
C30902S

C30921S
C30902SaC
C30902STC
SPCM-100-PQ

دrCM-200-PQ
SPCM-100/200-PQ-FXXX
SPCM-QCX

OTHER: Most of our sales represent custom products and product developments. Call us with your special requirements.

Silicon Avalanche Photodiode Preamplifier Modules 400 to 1100 nm

Notes
eat C 30902 E
from Metrotek

- case "Q"

Guly 7/97
Disk: AV-
7ame: 149\#7910. INS

