AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORMELECTRONICS SINCE 1975

- P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: (315) 472-5270 FAX: (613) 226-2802

TEL: 1-800-265-6681
FAX: 1.800-561-1970
U.S.A. \& CANADA
e-mail: info ©avtechpulse.com

X BOX 5120 STN.F OTTAWA, ONTARIO CANADA K2C $3 \mathrm{H}_{4}$ TEL: (613) 226-5772 FAX: (613) 226-2802

INSTRUCTIONS

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 BASIC TEST SET-UP

1) Connect the instrument as shown above. Do not apply prime power. Note that the sync input to the scope is connected to TRIG A (and not to TRIG B). Alternatively, it may be connected to the rear panel "C" BNC connector.
2) Terminate OUT in a load impedance of 50 K (or higher) and do not use 50 Ohm coaxial cables having a length greater than one meter (to avoid waveform distortion).
3) Set the amplitude controls to maximum counter clockwise.
4) Set the offset controls at 5.0 and the offset ON-OFF switch in the OFF position.
5) Set the INT-EXT switch in the INT position and the WAVEFORM selector switch in the SINE position.
6) Set the PRF range switch in the 100 Hz position (mid range).
7) Set the scope time base on about $5 \mathrm{~ms} / \mathrm{div}$ and the vertical on about 50 Volts/div and set the scope time base to trigger on EXT (+).
8) Turn on the prime power and adjust scope trigger controls to obtain a trace.
9) Rotate the amplitude control clockwise to obtain the desired output amplitude (as high as 400 Volts peak to peak).
10) Set the OFFSET ON-OFF switch in the ON position and rotate the OFFSET amplitude control to obtain the desired offset (0 to ± 50 Volts).
11) CAUTION: Take great care not to operate into a low impedance (i.e. < 50K) or into a short circuit as this may result in damage to the output stage.
12) Units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument OFF and turn the indicator light ON. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn ON (i.e. light OFF) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light $O N$) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:
13) Removing output load short circuit (if any)
14) Reducing the output amplitude

Note the overload light may activate when the prime power is turned on. The light will extinguish after a few seconds.
13) The output waveform may be changed to square wave or triangle by simply changing the position of the waveform selector switch.
14) To GATE the unit externally, set the INT-EXT switch in the EXT position and apply the GATING signal (OV or +2.5 V) to the TRIG A and TRIG B ports. The outputs will appear when the gating signal exceeds +2.5 V . Note that when operating in this mode, the scope may be triggered from the rear panel "C" BNC connector.
15) The unit can be converted from 110 to $220 \mathrm{~V} 50-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused voltage selector-cable connector assembly.
16) For additional assistance:

Tel: (613) 226-5772
Fax: (613) 226-2802

Fig. 2 FRONT PANEL CONTROLS
(1) ON-OFF Switch. Applies prime power to all stages.
(2) PRF Control. Varies output PRF as follows:

Range	1	1	Hz	10	Hz
Range	2	10	Hz	100	Hz
Range	3	100	Hz	1	kHz

(3) WAVEFORM. 3-position switch selects between square, sine or triangular output at (4).
(4) OUT. BNC connectors provide output to high impedance load ($\geq 50 \mathrm{~K}$). Output may include 1 Hz to 1 kHz component and DC offset component.
(5) AMPLITUDE. Ten turn control determines amplitude of 1 Hz to 1 kHz component at (4).
(6) OFFSET. Ten turn control allows DC offset at (4) to be varied from 0 to ± 50 Volts. ON-OFF switch turns DC offset on or off.
(7) INT-EXT, TRIG A, TRIG B. With the two position switch in the INT position, the frequency and shape of the 1 Hz to 1 kHz component at (4) is determined by controls (2) and (3). Also, in this position a 5 Volt square wave is provided at the TRIG A BNC connector for the purpose of triggering a scope. When the two position switch is in the EXT position, the AV-151B-C outputs may be gated on and off by applying $O V$ (OFF) or +2.5 V (ON) to the TRIG A and TRIG B connectors. When operating in this mode, the scope time base may be triggered from the rear panel "C" BNC connector.
(8) OVERLOAD. Units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument OFF and turn the indicator light ON. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn ON (i.e. light OFF) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light ON) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:

1) Removing output load short circuit (if any)
2) Reducing the output amplitude

Note that the overload light may come on when the prime power is applied. The light will extinguish after a few seconds.

Fig. 3 BACK PANEL CONTROLS

(1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (1.0A SB).
(2) 2.0A SB. Fuse which protects the output stage if the output duty cycle rating is exceeded.
(3) C CONNECTOR. When operating in the EXT GATING mode, the scope may be triggered from this connector.

AVTECH ELECTROSYSTEMS LTD.
NANOSECOND WAVEFORM ELECTRONICS SINCE 1975
P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: (315) 472-5270
FAX: (613) 226-2802

TEL: 1-800-265-6681
FAX: 1-800-561-1970
U.S.A. \& CANADA
e-mail: info@avtechpulse.com

* BOX 5120 STN. F OTTAWA, ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772 FAX: (613) 226-2802

Fax Ref No:
175

To: SUNY Health Science Ctr. Our Fax No:

Date:

Attn:

Subject:

Dr. William Chuang
Tel: 315-464-5787
AV-151B-C-SUNY2, SN 7482

No. of pages:

From: Avtech Electrosystems Itd.
(613) 226-2802

January 26, 1996

Receivers Fax No: 315-464-5504

This will confirm that we can add a two channel gating function to this unit. If so modified and operated in the internal mode, the output would be as for the original unit. When operated in the external mode, the output wave shape (for both channels) would be determined by the internal clock (square, sine or triangle) provided +2.5 V is applied to the TRIG A and TRIG B BNC connectors. If the potentials applied to the TRIG A and TRIGB BNC connectors are low, outputs would go to zero (see attached sketch). The waveforms applied to TRIG A and TRIG B need not be identical. Note that with the above described modification, the unit will no longer operate as a linear amplifier (in the EXT mode) providing a gain as high as $\times 100$.

Again, please advise me if I have interpreted your requirement correctly. The charge for this modification will be $\$ 298.00$ US with a four day delivery.

Rgds

Chief Engineer
WC: pr

$=P .0 .80 \times 265$ OGDENSBURG. NY U.S.A. 13669-0265 TEL: (315) 472-5270 FAX: (613) 226-2802

TEL: 1-800-265-6681
FAX: 1-800-561-1970
U.S.A. \& CANADA
e-mail: info avtechpulse.com
$\mathrm{X}_{\text {BOX }} 5120$ STN. F OTTAWA, ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772 FAX: (613) 226-2802

August 30, 1995.

Dr. William Chuang
SUNY Health Science Center
Neurosurgery Research Laboratory
766 Irving Avenue
Room 3118, Weiskotten Hall
Syracuse, NY 13210

Dear William:
Following our phone conversation of August 29 th, I am pleased to offer the following revised price and delivery quotation:

Model designation:
Number of outputs:

Basic output waveforms:

Output amplitude:

PRF:
Duty cycle:
Pulse width:

Load impedance:

Rise, fall time:
(for max output, square wave)

AV-151B-C-SUNY2
Two (two amplitude controls, but all other controls are shared)

See enclosed sketch and page 102, Catalog No. 9. Generates square, triangle and sine waveforms.

0 to ± 200 Volts.
(Two ten turn controls. Also provides 0 to ± 50 Volts DC offset.)

1 Hz to 1000 Hz
50\% fixed.
0.5 ms to 500 ms (controlled by PRF control).
$\geqslant 50 \mathrm{~K}$ (we assume that the bimorph draws less than 4 mA)
$\leqslant 1$ us

Chassis size:

Other:

Price:

Delivery:
$3.9^{\prime \prime} \times 17^{\prime \prime} \times 14.8^{\prime \prime}$
See standard AV-151B-C, page 102, Catalog No. 9.
\$4,998.00 US each, FOB destination. Please note that this price includes our standard 5\% academic discount.

60 days ARO

Thank you for your continuing interest in our products. Please call me again (1-800-265-6681) if you require any additional information or modifications to the above quotation.

WC:mhd

Feb. 12/96
Disk: AV-150
Tame: 51 BCSUNYMD2

