AVTECH

- P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: (315) 472-5270
FAX: (613) 226-2802

圂 BOX 5120 STN. F OTTAWA, ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772
FAX: (613) 226-2802

INSTRUCTIONS

MODEL AV-15SD-N-LHB-C DRIVEF
S.N.:

WAFFANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warpanty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

The driver module should be secured to a heat sink using $410-32$ machine screws, one for each corner hole. The driver was shipped with four 10-32 2" screws installed. The heat sink must be capable of maintaining the bottom surface of the chassis at less than $\approx+40^{\circ} \mathrm{C}$ when the module is dissipating 50 watts. Nate that an internal temperature control circuit will remove the drive to the output stage in the case of severe overheating. As instructed by LHS, the heat sink surface of the driver module was left unfinished. Note that the end covers may protrude slightly and so should be milled down when finishing the bottom surface. Do not remove the end covers when finishing (or milling).

The module should be connected to its load. DC power supplies and external controls as shown in Fig. 1. Note that the pots may be molded composition, Cermet or wirewound (1/2W).

CAUTION:
i) The negative power supply voltage must be in the range of -10 ± 0.3 Volts. For applied voltage magnitudes of more than -10.3 Volts, severe overheating of the unit will result. For applied voltage magnitudes of less than -9.7 Volts, the unit may fail to function as a constant current supplv.
ii) The positive and negative supply potentials must be applied either simultaneously (within 0.1 sec) or the negative supply must be applied before the positive supply. If the positive supply is applied before the negative supply, a high positive current \{ 1.0 Amperes) will flow and may damage both the load and the driver module. If fractional second outages of the negative supply is anticipated, a very large electrolytic energy storage capacitor (y 50,000 ufd) should be placed between the -10 V input terminal and ground to maintain the negative potentials during the outage.
4) For internal pulse mode operation, the 50 Ohm cable between the IN and OUT ports must be connected and PINS 1 and 2 (CW-PULSE) should be connected by the usersupplied switch SW1. The pulse repetition frequency, width and amplitude are controlled by the user-supplied pots; $\mathrm{F} 2, \mathrm{~F} 3$ and PH , respectively. In this mode, the masimum duty cycle is limited to 90\%.
5) For internal CW mode operation, the 50 Ohm cable is connected and the user-supplied switch SWI is placed in the CW position and the output amplitude is controlled by the user-supplied Pot P1 (P2, P3 and P4 are now inactive).
6) For external mode operation, the 50 Ohm cable is removed and 0 to +5.0 Volts is applied to the IN SMA connector ($\mathrm{RIN}_{\mathrm{IN}}=1 K$). Switch SWl must be in the PULSE position. Pots Fi. $\mathrm{P} 2, \mathrm{~F} 3$ and P 4 are inactive. In this mode the driver functions as a linear voltage to current connector. CAUTION: Dutput current rises to maximum if IN is left open-circuited.
7) The relationship between AMP pot settings (on input valtage amplitude) and output current may be conveniently established by connecting a 0.5 Ohm low inductance power resistor ksuch units are available from DALE or CADDOCK) between the OUT terminal and ground (no diode). The peak output current may be deduced from the peak output voltage (and 0.50 hm) and related to the input control setting. This resistive load may also be used to confirm the output pulse parameters \{eg. PRF, FW, rise time, overshoat).
8) The laser diode load was simulated by placing three IR7OH10 silicone rectifier diodes in series with a 0.1 Ohm 20 watt low inductance resistor. One end of the resistor was connected to ground so that this resistor could be used as a current-viewing element by monitoring the resistor voltage).
9) The laser diode load is protected against positive going transients by a 1 N5819 diode which shunts the final output stage of the driver.
10) For additional assistance:

Tel: (613) 226-5772
Fax: (613) 226-2802
INIERNAL MODE OPERATION: 50 OHM CABLE CONNECTED. SW1, P1, P2, P3, P4 FUNCTONAL
EXTERNAL MODE OPERATON: 50 OHM CABLE REMOVED AND O TO +5V APPUED TO \mathbb{N} CONNECTOR.
 DRRER OPERAIES AS A LNSEAR VOLTAGE TO CURRENT
CONVERTER IN THE EXTERNAL MODE.
CAUTION: OUTPUT CURRENT RISES TO MAX IF IN IS LETT
OPEN CIRCUTED. \square
\square
\square INIERNAL MODE OPERATION: 50 OHM CABLE CONNECTED. SW1, P1, P2, P3, P4 FUNCTIONAL㓺 STMER OI

FIGURE 1 - AVTECH MODEL AV-155D-N-LHB-C CONTROL CONNECTIONS
\square P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: (315) 472.5270 FAX: (613) 226-2802

BOX 5120 STN. F OTTAWA, ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772 FAX: (613) 226-2802

Fax Ref No:	6269	From: Avt	Clectrosys
To:	Lockheed Sanders,	Our Fax No:	613-226-2802
	Nashua, NH	Date:	June 11, 199
Attn:	John Doherty, MS MER15-1813	Receivers Fax No:	603-885-4603
	Tel: 603-885-2741		
Subject:	5.2 Amp laser driver module	No. pages Faxed:	3

Following my FAX of May 3, I am pleased to provide some more detailed specifications for this unit:

Model designation: AV-155D-N-LHB-C

Pulse Mode

-5.2 Amp (to 0 to -3 Volts). When triggered internally, output amplitude may be varied from 0 to -5.2 Amp via a usersupplied remote 1 K pot which connects to 3 solder terminals. When triggered externally, the output amplitude is controlled by the amplitude of the applied trigger pulse (0 to +4 Volts). To trigger internally, the OUT-IN SMA connectors must be connected by a $4^{\prime \prime}$ long RG174 cable. To trigger externally, the RG174 cable is removed and the trigger pulse is applied to the IN SMA connector.

Pulse Mode
Output pulse width:

PRF:
Internal trigger:
N/A.
100 Hz to 500 Hz . Controlled by a 5 K user-supplied remote pot which connects to 3 solder terminals.

External trigger:
Equals input trigger PRF.

Rise, fall time
Prime power:

Chassis size:
Chassis material:
Mounting:

Connectors:
$\leqslant 10$ us.
a) +10 Volts, 0.3 Amp.
b) -10 Volts, 3.0 Amp.
$1.5^{\prime \prime} \times 3^{\prime \prime} \times 5 "$.
Aluminum.
3" x 5" surface must be attached to a heatsink to maintain the chassis temperature at less than $35^{\circ} \mathrm{C}$ (power dissipated by the module is about 50 Watts).

Prime power: Solder terminals PRF, PW, mode: Solder terminals Output:

BNC connector. Diode may be connected using up to 4 feet of 50 Ohm coaxial cable (we also recommend the use of our AV-LZ1 low impedance line)

$B 2-155 D-N-\angle H+B-C$ cas595515

Quely $16 / 93$

