$\square \quad$ P.O.BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: (315) 472-5270
FAX: (613) 226-2802

TEL: 1-800-265-6681
FAX: 1-800-561-1970
U.S.A. \& CANADA
e-mail: info@avtechpulse.com

* BOX 5120 STN. F OTTAWA, ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772 FAX: (613) 226-2802

INSTRUCTIONS
S.N.:

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

CONTENTS

General Operating Instructions Page 3
Front Panel Controls 7
Rear Panel Controls Page 10
Start-up Check List Page 13

Fig. 1

MODEL AV-155C-C PULSE GENERATOR TEST ARRANGEMENT (RESISTIVE LOAD)

$110 / 220 \mathrm{~V}$ $50-60 \mathrm{~Hz}$

GENERAL OPERATING INSTRUCTIONS

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (probes, cables, connectors, etc.) should exceed 10 MHz .
2) A low-inductance resistor should be used as the load. Note that an inductance of 1 uh will yield an inductance spike of about 1.5 Volts. Also note that the load resistance must not exceed 3 ohms (for a maximum output current of 5 Amps) because the compliance voltage rating of the unit is 15 Volts. Note that to obtain an output, the STANDBY-OPERATE switches must be in the OPERATE position.
3) Model AV-155C-C-MIA provides the output waveforms shown in Fig. 2.
4) To control the unit via the internal clock, set the INT-EXT switch in the INT position. The PRF is then variable from 0.1 to 1.0 Hz .
5) The unit may be triggered externally by setting the INT-EXT switch in the EXT position and applying a TTL trigger pulse to the TRIG BNC (PW $\geq 50 \mathrm{~ns}$). The unit may be operated in the SINGLE PULSE MANUAL mode by setting the INT-EXT switch in the MAN position and pushing the SINGLE PULSE button.
6) The output pulse width is controlled by means of the front panel ten turn PW controls and the two-position range switches. The control should initially be set mid range and the pulse width adjusted using an oscilloscope.
7) The output pulse amplitude is controlled by means of the front panel ten turn AMP control. Note that the load voltage range (i.e. compliance voltage) of the unit is 15 Volts so the load resistance must be sufficiently low (≤ 3 Ohms) so that the load voltage does not exceed 15 Volts.
8) The DELAY control controls the relative delay between the reference output pulse provided at the TRIG output and the OUTPUT A. This delay is variable over the range of 0.1 us to 10 us.

MIN MAX

Range 1	0.1 us	1.0 us
Range 2	1.0 us	10 us

9) The DELAY AB control determines the delay between the leading edge of the output "B" and the output "A" as follows:

Range 1	0	to 1
Range	2	1
Range	3	10 ms to 10 ms
to 100 ms		

10) To obtain an output, the STANDBY-OPERATE switch must be in the OPERATE position. In the STANDBY position, a short circuit is placed across the output terminals and the output amplitude control signal is set to zero. This control may be used as a safety feature or as a means of deactivating one or both of the outputs.
11) OVERLOAD. An automatic overload protective circuit controls the front panel overload light. If the unit is overloaded (by operating at an exceedingly high duty cycle) the protective circuit will turn the output of the instrument OFF and turn the indicator light ON. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn ON (i.e. light OFF) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light ON) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:
12) Reducing PRF (i.e. switch to a lower range)
13) Reducing pulse width (i.e. switch to a lower range)
14) Reducing the output amplitude

The overload light may illuminate when the prime power is first applied. The light will extinguish after a few seconds and the unit will then operate normally.

Note that the output stage will safely withstand a short circuited load condition.
12) The unit can be converted from 120 to $240 \mathrm{~V} 50-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused voltage selector-cable connector assembly.
13) For additional assistance:

Tel: (613) 226-5772
Fax: (613) 226-2802

(1) ON-OFF Switch. Applies basic prime power to all stages.
(2) PRF Control. Varies PRF from 0.1 Hz to 1 Hz .
(3) DELAY Control. Controls the relative delay between the reference output pulse provided at the TRIG output (4) and the output "A" (6). This delay is variable over the range of 0.1 to about 10 us.

MIN MAX

Range 1	0.1 us	1.0 us
Range 2	1.0 us	10 us

(4) TRIG. When the INT-EXT switch (5) is in the INT position this output is used to trigger the scope time base. The output is a TTL level 100 ns (approx.) pulse capable of driving a fifty Ohm load. The external trigger signal (TTL, PW $\geq 50 \mathrm{~ns}$) is applied at this input when the INT-EXT switch (5) is in the EXT position.
(5) INT-EXT. To control the unit via the internal clock, set the INT-EXT switch in the INT position. The PRF is then variable from 0.1 to 1.0 Hz . The unit may be triggered externally by setting the INT-EXT switch in the EXT position and applying a TTL trigger pulse to the TRIG BNC ($\mathrm{PW} \geq 50 \mathrm{~ns}$). The unit may be operated in the SINGLE PULSE manual mode by setting the INT-EXT switch in the MAN position and pushing the SINGLE PULSE button.
(6) DELAY AB. The DELAY AB control determines the delay between the leading edge of the output "B" and the output "A" as follows:

Range 1	0	to 1
Range	2	1
Ras		
Range	3	10 ms to 100 ms

(7) PULSE WIDTH. The output pulse width is controlled by means of the front panel ten turn PW controls and the two-position range switches. The control should initially be set mid range and the pulse width adjusted using an oscilloscope.
(8) AMPLITUDE. The output pulse amplitude is controlled by means of the front panel ten turn AMP control. Note that the load voltage range (i.e. compliance voltage) of the unit is 15 Volts so the load resistance must be sufficiently low (≤ 3 Ohms) so that the load voltage does not exceed 15 Volts.
(9) OUT. The load ($\mathrm{R}_{\mathrm{L}} \leq 3$ Ohms) is connected to the BNC connectors. RG58 cable may be used if necessary.
(10) OPERATE-STANDBY. To obtain an output, the STANDBYOPERATE switch must be in the OPERATE position. In the STANDBY position, a short circuit is placed across the output terminals and the output amplitude control signal is set to zero. This control may be used as a safety feature or as a means of deactivating one or both of the outputs.
(11) OVERLOAD. An automatic overload protective circuit controls the front panel overload light. If the unit is overloaded (by operating at an exceedingly high duty cycle) the protective circuit will turn the output of the instrument OFF and turn the indicator light ON. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn ON (i.e. light OFF) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light ON) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:

1) Reducing PRF (i.e. switch to a lower range)
2) Reducing pulse width (i.e. switch to a lower range)
3) Reducing the output amplitude

The overload light may illuminate when the prime power is first applied. The light will extinguish after a few seconds and the unit will then operate normally.

Note that the output stage will safely withstand a short circuited load condition.

Fig. 4 BACT PANEL CONTROLS

- 9 -

BACK PANEL CONTROLS

1) Power Entry Module. Detachable line cord connects to this point. Also contains voltage selector card and line fuse (0.50 A SB).
2) 0.5 A SB Fuses. Limits current supplied to the output stages (A and B).
3) MA, MB CURRENT MONITORS. BNC conncectors provide coincident replicas of the output pulses. For $R_{L} \geq 1 K$.

$$
\begin{aligned}
& I_{\text {LOAD }}=5 \mathrm{~V}_{\mathrm{M}} \text { (Volts, Amp) } \\
& \text { For } R_{L}=50 \text { ohm } \\
& I_{\text {LOAD }}=10 \mathrm{~V}_{\mathrm{M}} \text { (Volts, Amp) }
\end{aligned}
$$

V_{M} is the monitor output Volt, amplitude is determined using a scope.

TOP COVER REMOVAL AND RACK MOUNTING

1) The interior of the instrument may be accessed by removing the four Phillips screws on the top panel. With the four screws removed, the top cover may be slid back (and off).
2) The -R5 rack mount kit may be installed after first removing the one Phillips screw on the side panel adjacent to the front handle.

The AV-155C-C unit consists of the following basic modules:

1) AV-155C-PG pulse generator modules (two)
2) +24 V power supply board
3) -DB single pulse module
4) -DL delay control modules (two)
5) -CL clock module
6) -OL overload module

The modules are interconnected as shown in Fig. 5.
In the event of an instrument malfunction, it is most likely that the 0.5 A slow blow fuse or the main power fuse on the rear panel has blown. Replace if necessary. If the unit still does not function, it is most likely that some of the output switching elements have failed and these elements cannot be changed in the field. Therefore, the unit should be returned to AVTECH for servicing.

1) The instruction manual has been studied thoroughly.
2) Connect resistive loads ($R_{L} \leq 3$ Ohms) to the OUT terminals and set the STANDBY-OPERATE switch in the OPERATE position. Connect scope probes across the resistive loads.
3) Set the pulse width delay and PRF controls at the approximate desired values. Set the amplitude controls fully counterclockwise.
4) Set the INT-EXT switch on INT.
5) Connect the rear panel M output to the scope (1 VOLT/DIV) and connect the TRIG out to the scope time base.
6) Turn on the prime power. The scope time base should be triggering.
7) Gradually increase the output amplitude by rotating the amp controls clockwise and observe the waveforms on the scope. A rectangular pulse should appear on the scope (for both the load voltage and monitor channels) and the amplitudes should increase as the amplitude controls are rotated clockwise.
8) Adjust pulse width, pulse period (i.e. PRF) and amplitude to obtain the desired settings.
9) Briefly set the OPERATE-STANDBY controls to the STANDBY position and note that the output voltage (and the monitor outputs) are reduced to zero.
10) If additional assistance is required:

Tel: (613) 226-5772
Fax: (613) 226-2802
$=$ P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: (315) 472-5270
FAX: (613) 226-2802

TEL: 1-800-265-6681
FAX: 1-800-561-1970
U.S.A. \& CANADA
e-mail: info@avtechpulse.com

X BOX 5120 STN. F OTTAWA, ONTARIO CANADA K2C $3 \mathrm{H}_{4}$ TEL: (613) 226-5772
FAX: (613) 226-2802

Tyler Malmrose Morton International 3350 Airport Road Ogden, UT 84405

Tel: 801-625-9218
Fax: 801-625-8258

Dear Tyler:
Following our telephone conversation of September 30 th, I am pleased to provide a revised price and delivery quotation for a special purpose, two channel pulsed constant current generator meeting the following specifications:

Model designation:
Number of channels:

Delay:

AV-155C-C-P-MIA.
Two (A and B) each with separate amplitude and pulse width controls.

Channel B may be delayed with respect to Channel A via a threeposition range switch and a ten turn locking dial control as follows: 0 to 1 ms

1 to 10 ms
10 to 100 ms
0 to 5 Amp. Controlled by a front panel 10 turn locking dial control.
0.1 to 10 ms . Controlled by a ten turn locking dial control and a two-position range switch as follows: 0.1 to 1.0 ms 1.0 to 10 ms

Price: Channel A: \$2,249.00 US.
Channel B: $\$ 2,249.00$ US.
Note that Channels A and B are to be combined in a single chassis and shipped as the Model AV-155C-C-P-MIA.

FOB:
Delivery:
Destination.
60 days ARO.
Thank you for your interest in our products. Please call me again (1-800-265-6681) if you require any additional information or modifications to the above quotation.

WC: pr

AVTECH ELECTROSYSTEMS LTD.
NANOSECOND WAVEFORM ELECTRONICS SINCE 1975
P.O. BOX 265 OGDENSBURG. NY U.S.A. 13669-0265 TEL: (315) 472-5270
FAX: (613) 226-2802

TEL: 1-800-265-6681
FAX: 1-800-561-1970
U.S.A. \& CANADA
e-mail: info ©avtechpulse.com

X BOX 5120 STN. F OTTAWA. ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772 FAX: (613) 226-2802

Fax Ref No: 835
From: Avtech Electrosystems Ltd.

To:
Morton International Our Fax No:
(613) 226-2802

Date:

Sept. 17, 1996

Attn:	Keith Barnes	Receivers Fax No:	
	Tel: 801-625-4876		
Subject: \quad Our Quote of Sept. $13 / 96$	No. of pages: $\quad 2$		

1) For your information, I enclose a sketch of the face plate for Model AV-155C-C-MIA.
2) Please give me a call if you require any additional
pages :
2

Dr. Walter Chudobiak
Chief Engineer
WC: pr

7700.5196

Disk: RV-150
$-R 5$
7ame: 155CCMIA.INS

