AVTECH ELECTROSYSTEMS LTD.
NANOSECOND WAVEFORMELECTRONICS SINCE 1975

P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265

TEL: (315) 472-5270
FAX: (613) 226-2802

TEL: 1-800-265-6681 FAX: 1-800-561-1970
e-mail: info@avtechpulse.com
http://www.avtechpulse.com

- P.O. BOX 5120 STN. F OTTAWA, ONTARIO CANADA K2C 3 H 4 TEL: (613) 226-5772
FAX: (613) 226-2802

INSTRUCTIONS

MODEL AV-112A-PS

0 to $\pm 200 \mathrm{~V}, 300 \mathrm{kHz}$
VARIABLE-GAIN LINEAR AMPLIFIER

SERIAL NUMBER:

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

TECHNICAL SUPPORT

Phone: 613-226-5772 or 1-800-265-6681
Fax: 613-226-2802 or 1-800-561-1970
E-mail: info@avtechpulse.com
World Wide Web: http://www.avtechpulse.com

TABLE OF CONTENTS

WARRANTY 2
TECHNICAL SUPPORT 2
TABLE OF CONTENTS 3
INTRODUCTION 4
HIGH-VOLTAGE PRECAUTIONS 4
SPECIFICATIONS 5
INSTALLATION 6
VISUAL CHECK 6
PLUGGING IN THE INSTRUMENT 6
FRONT PANEL CONTROLS 7
REAR PANEL CONTROLS 8
GENERAL INFORMATION 9
BASIC CONTROL 9
TOP COVER REMOVAL 9
RACK MOUNTING 9
OPERATIONAL CHECK 10
MAINTENANCE 12
POWER SUPPLY AND FUSE REPLACEMENT 13
PERFORMANCE CHECK SHEET 15

INTRODUCTION

The Model AV-112A-PS variable-gain linear amplifier accepts input voltages in the range of 0 to $\pm 2 \mathrm{~V}$, and has a variable gain of +1 to +100 . The maximum output voltage is $\pm 200 \mathrm{~V}$. The $\mathrm{AV}-112 \mathrm{~A}-\mathrm{PS}$ will drive load impedances of $5 \mathrm{k} \Omega$ or higher.

HIGH-VOLTAGE PRECAUTIONS

CAUTION: This instrument provides output voltages as high as ± 200 Volts, so extreme caution must be employed when using this instrument. The instrument should only be used by individuals who are thoroughly skilled in high voltage laboratory techniques. The following precaution should always be observed:

1) Keep exposed high-voltage wiring to an absolute minimum.
2) Wherever possible, use shielded connectors and cabling.
3) Connect and disconnect loads and cables only when the amplifier is turned off.
4) Keep in mind that all cables, connectors, oscilloscope probes, and loads must have an appropriate voltage rating.
5) Do not attempt any repairs on the instrument, beyond the fuse replacement procedures described in this manual. Contact Avtech technical support (see page 2 for contact information) if the instrument requires servicing.

SPECIFICATIONS

Model:	AV-112A-PS
Output Amp. (max):	± 200 Volts
Load impedance:	$\geq 5 \mathrm{k} \Omega$
Bandwidth (kHz):	300
Voltage gain (variable):	$\times 1$ to $\times 100$
Rise time (for max output):	$1.0 \mu \mathrm{~s}$
Output power, max.	6 W
Connectors:	BNC
Power:	$120 / 240$ Volts (switchable) $50-60 \mathrm{~Hz}$
Dimensions:	$\left.100 \mathrm{~mm} \times 430 \mathrm{~mm} \times 375 \mathrm{~mm} \mathrm{(3.9"} \times 17^{\prime \prime} \times 14.8 "\right)$

INSTALLATION

VISUAL CHECK

After unpacking the instrument, examine to ensure that it has not been damaged in shipment. Visually inspect all connectors, knobs, and handles. Confirm that a power cord is with the instrument. If the instrument has been damaged, file a claim immediately with the company that transported the instrument.

PLUGGING IN THE INSTRUMENT

Examine the rear of the instrument. There will be a male power receptacle, a fuse holder and the edge of the power selector card visible.

For AC line voltages of $110-120 \mathrm{~V}$, the power selector card should be installed so that the " 120 " marking is visible from the rear of the instrument.

For AC line voltages of $220-240 \mathrm{~V}$, the power selector card should be installed so that the " 240 " marking is visible from the rear of the instrument.

If it is not set for the proper voltage, remove the fuse and then grasp the card with a pair of pliers and remove it. Rotate horizontally through 180 degrees. Reinstall the card and the correct fuse.

In the 120 V setting, a 1 A slow blow fuse is required. In the 240 V setting, a 0.5 A slowblow fuse is required.

FRONT PANEL CONTROLS

1. POWER Switch. The POWER push button switch applies AC prime power to the primaries of the transformer, turning the instrument on. The push button lamp is connected to the +15 V DC supply.
2. OVERLOAD Indicator. As a protective measure, this instrument includes an automatic overload circuit, which controls the front panel overload light. If the unit is overloaded (for instance, by operating into a very low impedance), the protective circuit will turn the output of the instrument OFF and turn the indicator light ON. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn ON (i.e. light OFF) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light ON) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation.

This overload indicator is only likely to come on in two situations:

- Briefly at startup. This is not a cause for concern.
- When the load impedance is too low (<5 k $)$). In this case, turn off the instrument and connect the proper load.

3. IN Connector. The input signal is applied to this connector. The input impedance is approximately $1 \mathrm{k} \Omega$. The input must not exceed $\pm 2 \mathrm{~V}$.
4. GAIN Dial. This ten-turn dial is used to vary the amplifier gain between +1 and +100 .
5. OUT Connector. This BNC connector provides the main output signal. The output is an amplified version of the input on (3). The gain ($V_{\text {OUT }} N_{\text {IN }}$) is controlled by (4).

REAR PANEL CONTROLS

1. AC POWER INPUT. A three-pronged recessed male connector is provided on the back panel for AC power connection to the instrument. Also contained in this assembly is a slow-blow fuse and a removable power selector card that can be removed and repositioned to switch between 110-120V AC in and 220-240V.

For AC line voltages of 110-120V, the power selector card should be installed so that the " 120 " marking is visible from the rear of the instrument.

For AC line voltages of $220-240 \mathrm{~V}$, the power selector card should be installed so that the " 240 " marking is visible from the rear of the instrument.

If it is not set for the proper voltage, remove the fuse and then grasp the card with a pair of pliers and remove it. Rotate horizontally through 180 degrees. Reinstall the card and the correct fuse.

In the 120 V setting, a 1 A slow blow fuse is required. In the 240 V setting, a 0.5 A slow-blow fuse is required.

GENERAL INFORMATION

BASIC CONTROL

The AV-112A-PS is a DC-300 kHz variable-gain linear amplifier. The gain is variable from +1 to +100 , and is adjusted by rotating the "GAIN" control.

The required voltage input signal is applied at the "IN" connector.
This mode is illustrated below:

TOP COVER REMOVAL

The top cover of the instrument may be removed by removing the four Phillips screws on the top panel. With these four screws removed, the top panel may be slid off by pulling it towards the rear.

The instrument should not be accessed internally unless it has been turned off for ten minutes, to allow all internal capacitors to discharge. The internal capacitor bank stores a considerable amount of energy.

RACK MOUNTING

A rack mounting kit is available. The -R5 rack mount kit may be installed after first removing the one Phillips screw on the side panel adjacent to the front handle.

OPERATIONAL CHECK

This section describes a sequence to confirm the basic operation of the instrument. It should be performed after receiving the instrument. It is a useful learning exercise as well.

Basic Test Arrangement

1) Connect a $5 \mathrm{k} \Omega$, 10 W test load between the OUT connector and ground. Confirm that the oscilloscope and the test load are rated for 200 Volt operation.
2) Set the signal generator to produce a $\pm 2 \mathrm{~V}, 25 \mathrm{kHz}$ waveform. Connect a cable from the SYNC connector of the signal generator to the TRIG input of an oscilloscope. Set the oscilloscope to trigger externally. Connect the main output of the signal generator to the input of the amplifier.
3) Connect one oscilloscope probe (channel A) to the output of the signal generator. Set the Channel A vertical scale to $1 \mathrm{~V} / \mathrm{div}$.
4) Connect one oscilloscope probe (channel B) to the $5 \mathrm{k} \Omega$ load. On the oscilloscope, set the channel A vertical scale to $100 \mathrm{~V} / \mathrm{div}$, and the horizontal scale to $20 \mu \mathrm{~s} / \mathrm{div}$.
5) Set the gain control to minimum (0.0). Turn on the amplifier and the signal generator.
6) Channel A should show a $\pm 2 \mathrm{~V}, 25 \mathrm{kHz}$ waveform from the signal generator. Rotate the gain control to its maximum setting. The Channel B waveform should increase to $\pm 200 \mathrm{~V}$, and have a shape similar to that of the Channel A waveform.
7) This completes the operational check.

If additional assistance is required:
Tel: (613) 226-5772
Fax: (613) 226-2802
Email: info@avtechpulse.com

MAINTENANCE

The fan grille, located on the bottom of the instrument, should be cleaned once a year so that it does not become blocked. To clean the grille, use a high-power vacuum cleaner.

POWER SUPPLY AND FUSE REPLACEMENTPOWER SUPPLY AND FUSE REPLACEMENT

This instrument has three main fuses, plus two spares. One, which protects the AC input, is located in the rear-panel power entry module, as described in the "Rear Panel Controls" section of this manual. If the power appears to have failed, check the AC fuse first.

The other two fuses (plus two spares) are located on the internal DC power supply, as shown below:

The positive fuse and one of the spare fuses on this circuit board are 2A slow-blow fuses, Littlefuse part number R452002. (This fuse can be ordered from Digikey, www.digikey.com. The Digikey part number is F1345CT-ND). The negative fuse and the second spare fuse are 0.5 A slow-blow fuses (Littlefuse R452.500, Digikey part number F1341CT-ND).

If you suspect that the DC fuses are blown, follow this procedure:

1. Remove the top cover, by removing the four Phillips screws on the top cover and then sliding the cover back and off.
2. Locate the two "Power OK" LEDs on the power supply circuit board, as illustrated above.
3. Turn on the instrument.
4. Observe the "Power OK" LEDs. If the fuses are not blown, the two LEDs will be lit (bright red). If one of the LEDs is not lit, the fuse next to it has blown.
5. Turn off the instrument.
6. If a fuse is blown, use needle-nose pliers to remove the blown fuse from its surface-mount holder.
7. Replace the fuse. (Spare 2 Amp and 0.5 Amp fuses are provided on the circuit board. They may be transferred to the active fuse locations using needle-nose pliers.)
edition 2-Dee12/02
same as Edition 1 only
Power Haply changed to a Amp
