AVTECH ELECTROSYSTEMS LTD. NANOSECOND WAVEFORM ELECTRONICS SINCE 1975 P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: (315) 472-5270 FAX: (613) 226-2802 TEL: 1-800-265-6681 FAX: 1-800-561-1970 e-mail: info@avtechpulse.com http://www.avtechpulse.com/ BOX 5120, LCD MERIVALE OTTAWA, ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772 FAX: (613) 226-2802 # **INSTRUCTIONS** MODEL AVH-HV1-B 0 TO 100 Volts, 100 kHz IMPULSE GENERATOR WITH IEEE 488.2 AND RS-232 CONTROL SERIAL NUMBER: _____ ## **WARRANTY** Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied. ### **TECHNICAL SUPPORT** Phone: 613-226-5772 or 1-800-265-6681 Fax: 613-226-2802 or 1-800-561-1970 E-mail: info@avtechpulse.com World Wide Web: http://www.avtechpulse.com # **TABLE OF CONTENTS** | WARRANTY | 2 | |-------------------------------------|----| | TECHNICAL SUPPORT | 2 | | TABLE OF CONTENTS | 3 | | INTRODUCTION | 5 | | AVAILABLE OPTIONS | 5 | | SPECIFICATIONS | 6 | | EC DECLARATION OF CONFORMITY | 7 | | INSTALLATION | 8 | | VISUAL CHECK | 8 | | POWER RATINGS | 8 | | CONNECTION TO THE POWER SUPPLY | 8 | | ENVIRONMENTAL CONDITIONS | 8 | | FUSES | 9 | | AC FUSE REPLACEMENT | 9 | | DC FUSE REPLACEMENT | 10 | | FUSE RATINGS | 10 | | FRONT PANEL CONTROLS | 11 | | REAR PANEL CONTROLS | 13 | | GENERAL INFORMATION | 15 | | BASIC PULSE CONTROL | 15 | | TRIGGER MODES | 16 | | GATING MODES | 17 | | PROTECTING YOUR INSTRUMENT | 18 | | TURN OFF INSTRUMENT WHEN NOT IN USE | 18 | | DO NOT EXCEED 100 kHz | 18 | | USE A 50Ω LOAD | 18 | | OPERATIONAL CHECK | 19 | | MECHANICAL INFORMATION | 22 | | TOP COVER REMOVAL | 22 | | RACK MOUNTING | 22 | | ELECTROMAGNETIC INTERFERENCE | | | MAINTENANCE | 23 | | REGULAR MAINTENANCE | 23 | |------------------------------------|----| | CLEANING | 23 | | PROGRAMMING YOUR IMPULSE GENERATOR | 24 | | KEY PROGRAMMING COMMANDS | 24 | | ALL PROGRAMMING COMMANDS | 2! | | PERFORMANCE CHECK SHEET | 27 | Manual Reference: T:\instructword\avh\AVH-HV1-B,edition1.sxw. Last modified February 27, 2004. Copyright © 2004 Avtech Electrosystems Ltd, All Rights Reserved. ### **INTRODUCTION** The AVH-HV1-B is a high performance, GPIB and RS232-equipped instrument capable of generating 1 ns wide impulses with 0V to 100V amplitudes at repetition rates up to 100 kHz into 50Ω loads. The AVH-HV1-B includes an internal trigger source, but it can also be triggered or gated by an external source. A front-panel pushbutton can also be used to trigger the instrument. The output voltage polarity depends on the model number: "-P" units: 0 to +100 Volts "-N" units: 0 to -100 Volts "-PN" units: 0 to ±100 Volts The AVH-HV1-B features front panel keyboard and adjust knob control of the output pulse parameters along with a four line by 40-character backlit LCD display of the output amplitude, pulse repetition frequency, and delay. The instrument includes memory to store up to four complete instrument setups. The operator may use the front panel or the computer interface to store a complete "snapshot" of all key instrument settings, and recall this setup at a later time. Please note that the output pulse width is extremely narrow (1 ns). The measurement equipment, cabling, loads, attenuators, and other devices used with the instrument must have a rated bandwidth of at least 2 GHz to obtain meaningful measurements. This instrument is intended for use in research and development laboratories. # **AVAILABLE OPTIONS** -OS Option: an externally generated DC offset can be added to the output. -T1 Option: the pulse width is 0.6 ns instead of 1 ns. # **SPECIFICATIONS** | Model: | AVH-HV1-B | | |--|---|--| | Amplitude¹: (50Ω load) | 0 to 100 V | | | Pulse width (20% rise time): | ≤ 1 ns⁴ | | | PRF: | 0 to 100 kHz | | | Polarity ² : | Positive or negative (specify) | | | Propagation delay:
(Ext trig in to pulse out) | ≤ 200 ns | | | Jitter: | ± 15 ps (Ext trig in to pulse out) | | | DC offset option ³ : | Apply required DC offset to back-panel solder terminals (± 50 Volts, 250 mA max) | | | Trigger required: | Ext trig mode: + 5 Volts, 50 to 500 ns (TTL) | | | Sync delay: | Sync out to pulse out: Variable 0 to 200 ns | | | Sync output: | + 3 Volts, 100 ns, will drive 50 Ohm loads | | | Gate input: | Synchronous or asynchronous, active high or low, switchable. Suppresses triggering when active. | | | Connectors: | Out: SMA Trig, Sync, Gate: BNC | | | GPIB, RS-232 control: | Standard on -B units | | | Power requirements: | 100 - 240 Volts, 50 - 60 Hz | | | Dimensions: | 100 mm x 430 mm x 375 mm (3.9" x 17" x 14.8") | | | Temperature range: | +5°C to +40°C | | For operation of variable-amplitude units at amplitudes of less than 20% of full-scale, best results will be obtained by setting the amplitude near full-scale and using external attenuators on the output. Indicate desired polarity by adding the suffix -P or -N (i.e. positive or negative) to the model number. For DC offset option suffix the model number with -OS. Avtech Model AVX-T bias tee can also be used to obtain DC offset. For 600 ps pulse width option, add suffix -T1. # **EC DECLARATION OF CONFORMITY** We Avtech Electrosystems Ltd. P.O. Box 5120, LCD Merivale Ottawa, Ontario Canada K2C 3H4 declare that this pulse generator meets the intent of Directive 89/336/EEC for Electromagnetic Compatibility. Compliance pertains to the following specifications as listed in the official Journal of the European Communities: EN 50081-1 Emission EN 50082-1 Immunity and that this pulse generator meets the intent of the Low Voltage Directive 72/23/EEC as amended by 93/68/EEC. Compliance pertains to the following specifications as listed in the official Journal of the European Communities: EN 61010-1:2001 Safety requirements for electrical equipment for measurement, control, and laboratory use #### **INSTALLATION** #### **VISUAL CHECK** After unpacking the instrument, examine to ensure that it has not been damaged in shipment. Visually inspect all connectors, knobs, liquid crystal displays (LCDs), and the handles. Confirm that a power cord, a GPIB cable, and two instrumentation manuals (this manual and the "Programming Manual for -B Instruments") are with the instrument. If the instrument has been damaged, file a claim immediately with the company that transported the instrument. #### **POWER RATINGS** This instrument is intended to operate from 100 - 240 V, 50 - 60 Hz. The maximum power consumption is 57 Watts. Please see the "FUSES" section for information about the appropriate AC and DC fuses. This instrument is an "Installation Category II" instrument, intended for operation from a normal single-phase supply. ## **CONNECTION TO THE POWER SUPPLY** An IEC-320 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket. The other end of the detachable power cord plugs into the local mains supply. Use only the cable supplied with the instrument. The mains supply must be earthed, and the cable used to connect the instrument to the mains supply must provide an earth connection. (The supplied cable does this.) #### **ENVIRONMENTAL CONDITIONS** This instrument is intended for use under the following conditions: - 1. indoor use; - 2. altitude up to 2 000 m; - 3. temperature 5 °C to 40 °C; - 4. maximum relative humidity 80 % for temperatures up to 31 °C decreasing linearly to 50 % relative humidity at 40 °C; - 5. Mains supply voltage fluctuations up to ±10 % of the nominal voltage; - 6. no pollution or only dry, non-conductive pollution. ## **FUSES** This instrument contains four fuses. All are accessible from the rear-panel. Two protect the AC prime power input, and two protect the internal DC power supplies. The locations of the fuses on the rear panel are shown in the figure below: # **AC FUSE REPLACEMENT** To physically access the AC fuses, the power cord must be detached from the rear panel of the instrument. The fuse drawer may then be extracted using a small flat-head screwdriver, as shown below: # DC FUSE REPLACEMENT The DC fuses may be replaced by inserting the tip of a flat-head screwdriver into the fuse holder slot, and rotating the slot counter-clockwise. The fuse and its carrier will then pop out. # **FUSE RATINGS** The following table lists the required fuses: | Fuses | Nominal
Mains
Voltage | Rating | Case
Size | Manufacturer's
Part Number
(Wickmann) | Distributor's
Part Number
(Digi-Key) | |-------------|-----------------------------|---|--------------|---|--| | #1, #2 (AC) | 100-240V | 0.5A, 250V,
Time-Delay | 5×20 mm | 1950500000 | WK5041-ND | | #3 (DC) | N/A | 0.8A, 250V,
Time-Delay | 5×20 mm | 1950800000 | WK5046-ND | | #4 (DC) | N/A | Not used.
A spare 0.8A fuse is installed here. | | | | The fuse manufacturer is Wickmann (http://www.wickmann.com/). Replacement fuses may be easily obtained from Digi-Key (http://www.digikey.com/) and other distributors. #### FRONT PANEL CONTROLS - 1. <u>POWER Switch</u>. This is the main power switch. When turning the instrument on, there may be a delay of several seconds before the instrument appears to respond. - 2. OVERLOAD Indicator. When the instrument is powered, this indicator is normally green, indicating normal operation. If this indicator is yellow, an internal automatic overload protection circuit has been tripped. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a very low impedance), the protective circuit will disable the output of the instrument and turn the indicator light yellow. The light will stay yellow (i.e. output disabled) for about 5 seconds after which the instrument will attempt to re-enable the output (i.e. light green) for about 1 second. If the overload condition persists, the output will be disabled again (i.e. light yellow) for another 5 seconds. If the overload condition has been removed, the instrument will resume normal operation. This overload indicator may flash yellow briefly at start-up. This is not a cause for concern. Note that the output stage will safely withstand a short-circuited load condition. 3. OUT CONNECTOR. This SMA-type connector provides the output to a 50Ω load. Caution: Voltages as high as ±100V may be present on the center conductor of this output connector. Avoid touching this conductor. Connect to this connector using standard coaxial cable, to ensure that the center conductor is not exposed. - 4. <u>SYNC OUT</u>. This connector supplies a SYNC output that can be used to trigger other equipment, particularly oscilloscopes. This signal leads (or lags) the main output by a duration set by the "DELAY" controls and has an approximate amplitude of +3 Volts to $R_L > 1 \text{ k}\Omega$ with a pulse width of approximately 100 ns. - 5. <u>LIQUID CRYSTAL DISPLAY (LCD)</u>. This LCD is used in conjunction with the keypad to change the instrument settings. Normally, the main menu is displayed, which lists the key adjustable parameters and their current values. The "Programming Manual for -B Instruments" describes the menus and submenus in detail. # 6. KEYPAD. | Control Name | Function | |--------------|---| | MOVE | This moves the arrow pointer on the display. | | CHANGE | This is used to enter the submenu, or to select the operating | | | mode, pointed to by the arrow pointer. | | ×10 | If one of the adjustable numeric parameters is displayed, this | | | increases the setting by a factor of ten. | | ÷10 | If one of the adjustable numeric parameters is displayed, this | | | decreases the setting by a factor of ten. | | +/- | If one of the adjustable numeric parameters is displayed, and | | | this parameter can be both positive or negative, this changes the | | | sign of the parameter. | | EXTRA FINE | This changes the step size of the ADJUST knob. In the extra- | | | fine mode, the step size is twenty times finer than in the normal | | | mode. This button switches between the two step sizes. | | ADJUST | This large knob adjusts the value of any displayed numeric | | | adjustable values, such as frequency, pulse width, etc. The | | | adjust step size is set by the "EXTRA FINE" button. | | | | | | When the main menu is displayed, this knob can be used to | | | move the arrow pointer. | ### **REAR PANEL CONTROLS** - AC POWER INPUT. An IEC-320 C14 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket. - 2. <u>AC FUSE DRAWER</u>. The two fuses that protect the AC input are located in this drawer. Please see the "FUSES" section of this manual for more information. - 3. <u>DC FUSES</u>. These two fuses protect the internal DC power supplies. Please see the "FUSES" sections of this manual for more information. - 4. <u>GATE</u>. This TTL-level (0 and +5V) logic input can be used to gate the triggering of the instrument. This input can be either active high or active low, depending on the front panel settings or programming commands. (The instrument triggers normally when this input is unconnected). When set to active high mode, this input is pulled-down to ground by a 1 k Ω resistor. When set to active low mode, this input is pulled-up to +5V by a 1 k Ω resistor. - 5. TRIG. This TTL-level (0 and +5V) logic input can be used to trigger the instrument, if the instrument is set to triggering externally. The instrument triggers on the rising edge of this input. The input impedance of this input is 1 k Ω . (Depending on the length of cable attached to this input, and the source driving it, it may be desirable to add a coaxial 50 Ohm terminator to this input to provide a proper transmission line termination. The Pasternack (www.pasternack.com) PE6008-50 BNC feed-thru 50 Ohm terminator is suggested for this purpose.) When triggering externally, the instrument can be set such that the output pulse width tracks the pulse width on this input, or the output pulse width can be set independently. - 6. <u>GPIB Connector</u>. A standard GPIB cable can be attached to this connector to allow the instrument to be computer-controlled. See the "Programming Manual for -B Instruments" for more details on GPIB control. - 7. <u>RS-232 Connector.</u> A standard serial cable with a 25-pin male connector can be attached to this connector to allow the instrument to be computer-controlled. See the "Programming Manual for -B Instruments" for more details on RS-232 control. - 8. <u>OS Connector</u>. (Optional feature. Present on units with the -OS option only). This connector allows an externally generated DC offset to be added to the output. The desired DC offset is applied to this connector, which is connected to the output centre conductor through a high-quality RF inductor. Do not exceed ±50V, 250 mA. # **GENERAL INFORMATION** #### **BASIC PULSE CONTROL** This instrument can be triggered by its own internal clock or by an external TTL trigger signal. In either case, two output channels respond to the trigger: OUT and SYNC. The OUT channel is the signal that is applied to the load. Its amplitude and pulse width are variable. The SYNC pulse is a fixed-width TTL-level reference pulse used to trigger oscilloscopes or other measurement systems. When the delay is set to a positive value the SYNC pulse precedes the OUT pulse. When the delay is set to a negative value the SYNC pulse follows the OUT pulse. These pulses are illustrated below, assuming internal triggering and a positive delay: If the delay is negative, the order of the SYNC and OUT pulses is reversed: The next figure illustrates the relationship between the signal when an external TTL-level trigger is used: As before, if the delay is negative, the order of the SYNC and OUT pulses is reversed. ## TRIGGER MODES This instrument has four trigger modes: - Internal Trigger: the instrument controls the trigger frequency, and generates the clock internally. - External Trigger: the instrument is triggered by an external TTL-level clock on the back-panel TRIG connector. - Manual Trigger: the instrument is triggered by the front-panel "SINGLE PULSE" pushbutton. - Hold Trigger: the instrument is set to not trigger at all. These modes can be selected using the front panel trigger menu, or by using the appropriate programming commands. (See the "Programming Manual for -B Instruments" for more details.) # **GATING MODES** Triggering can be suppressed by a TTL-level signal on the rear-panel GATE connector. The instrument can be set to stop triggering when this input high or low, using the front-panel gate menu or the appropriate programming commands. When gated, the output will complete the full pulse width if the output is high, and then stop triggering. Pulses are not truncated. # PROTECTING YOUR INSTRUMENT ## TURN OFF INSTRUMENT WHEN NOT IN USE The lifetime of the switching elements in the pulse generator module is proportional to the running time of the instrument. For this reason the prime power to the instrument should be turned off when the instrument is not in use. In the case of failure, the switching elements are easily replaced following the procedure described in a following section. # **DO NOT EXCEED 100 kHz** The output stage may be damaged if triggered by an external signal at a pulse repetition frequency greater than 100 kHz. ### USE A 50Ω LOAD The output stage may be damaged if the output is not terminated into a 50Ω load. ### **OPERATIONAL CHECK** This section describes a sequence to confirm the basic operation of the instrument. It should be performed after receiving the instrument. It is a useful learning exercise as well. Before proceeding with this procedure, finish reading this instruction manual thoroughly. Then read the "Local Control" section of the "Programming Manual for -B Instruments" thoroughly. The "Local Control" section describes the front panel controls used in this operational check - in particular, the MOVE, CHANGE, and ADJUST controls. BASIC TEST ARRANGEMENT - 1. Connect the pulse generator to a sampling oscilloscope as shown above. Note that: - 2. The use of 60 dB attenuator at the sampling scope vertical input channel will insure a peak input signal to the sampling scope of less than 1 Volt. Factory tests are conducted using Midwest Microwave model ATT-0444-20-SMA-02 attenuators. - a) The TRIG output channel provides TTL level signals (approximately 0 and +3V). To avoid overdriving the TRIG input channel of some scopes, a 20 dB attenuator may be required at the input to the scope trigger channel. - b) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 2 GHz. - c) Set the oscilloscope to trigger externally with the vertical setting at 100 mV/div and the horizontal setting at 1 ns/div. - 3. Turn on the AVH-HV1-B. The main menu will appear on the LCD. - 4. To set the AVH-HV1-B to trigger from the internal clock at a PRF of 10 kHz: - a) The arrow pointer should be pointing at the frequency menu item. If it is not, press the MOVE button until it is. - b) Press the CHANGE button. The frequency submenu will appear. Rotate the ADJUST knob until the frequency is set at 10 kHz. - c) The arrow pointer should be pointing at the "Internal" choice. If it is not, press MOVE until it is. - d) Press CHANGE to return to the main menu. - 5. To set the delay to 100 ns: - a) Press the MOVE button until the arrow pointer is pointing at the delay menu item. - b) Press the CHANGE button. The delay submenu will appear. Rotate the ADJUST knob until the delay is set at 100 ns. - c) The arrow pointer should be pointing at the "Normal" choice. If it is not, press MOVE until it is. - d) Press CHANGE to return to the main menu. - 6. At this point, nothing should appear on the oscilloscope. - 7. To enable the output: - a) Press the MOVE button until the arrow pointer is pointing at the output menu item. - b) Press the CHANGE button. The output submenu will appear. - c) Press MOVE until the arrow pointer is pointing at the "ON" choice. - d) Press CHANGE to return to the main menu. - 8. To change the output amplitude: - a) Press the MOVE button until the arrow pointer is pointing at the amplitude menu item. - b) Press the CHANGE button. The amplitude submenu will appear. Rotate the ADJUST knob until the amplitude is set at +100V (or -100V for "-N" models). - c) Observe the oscilloscope. You should see 1 ns wide, 100V pulses. If you do not, you may need to adjust the delay setting to a value more compatible with your sampling oscilloscope. Repeat step 4 if required. You may also need to adjust the sampling scope controls. - d) Rotate the ADJUST knob. The amplitude as seen on the oscilloscope should vary. Return it to 100V. - e) ("-PN" units only) Press the +/- button on the front panel. The amplitude as seen on the oscilloscope should flip polarity, to -100V. - f) Press CHANGE to return to the main menu. This completes the operational check. ## MECHANICAL INFORMATION #### **TOP COVER REMOVAL** If necessary, the interior of the instrument may be accessed by removing the four Phillips screws on the top panel. With the four screws removed, the top cover may be slid back (and off). Always disconnect the power cord before opening the instrument. There are no user-adjustable internal circuits. For repairs other than fuse replacement, please contact Avtech (info@avtechpulse.com) to arrange for the instrument to be returned to the factory for repair. Caution: High voltages are present inside the instrument during normal operation. Do not operate the instrument with the cover removed. ## **RACK MOUNTING** A rack mounting kit is available. The -R5 rack mount kit may be installed after first removing the one Phillips screw on the side panel adjacent to the front handle. #### **ELECTROMAGNETIC INTERFERENCE** To prevent electromagnetic interference with other equipment, all used outputs should be connected to shielded 50Ω loads using shielded 50Ω coaxial cables. Unused outputs should be terminated with shielded 50Ω coaxial terminators or with shielded coaxial dust caps, to prevent unintentional electromagnetic radiation. All cords and cables should be less than 3m in length. ### **MAINTENANCE** ## **REGULAR MAINTENANCE** This instrument does not require any regular maintenance. On occasion, one or more of the four rear-panel fuses may require replacement. All fuses can be accessed from the rear panel. See the "FUSES" section for details. # **CLEANING** If desired, the interior of the instrument may be cleaned using compressed air to dislodge any accumulated dust. (See the "TOP COVER REMOVAL" section for instructions on accessing the interior.) No other cleaning is recommended. ## PROGRAMMING YOUR IMPULSE GENERATOR ## **KEY PROGRAMMING COMMANDS** The "Programming Manual for -B Instruments" describes in detail how to connect the impulse generator to your computer, and the programming commands themselves. A large number of commands are available; however, normally you will only need a few of these. Here is a basic sample sequence of commands that might be sent to the instrument after power-up: *rst (resets the instrument) trigger:source internal (selects internal triggering) frequency 1000 Hz (sets the frequency to 1000 Hz) pulse:delay 100 ns (sets the delay to 100 ns) volt 80 (sets the amplitude to 80 V) output on (turns on the output) For triggering a single event, this sequence would be more appropriate: *rst (resets the instrument) trigger:source hold (turns off all triggering) pulse:delay 100 ns (sets the delay to 100 ns) output on (turns on the output) volt 80 (sets the amplitude to 80 V) trigger:source immediate (generates a single non-repetitive trigger event) trigger:source hold (turns off all triggering) output off (turns off the output) To set the instrument to trigger from an external TTL signal applied to the rear-panel TRIG connector, use: *rst (resets the instrument) trigger:source external (selects internal triggering) pulse:delay 100 ns (sets the delay to 100 ns) volt 80 (sets the amplitude to 80 V) output on (turns on the output) These commands will satisfy 90% of your programming needs. # **ALL PROGRAMMING COMMANDS** For more advanced programmers, a complete list of the available commands is given below. These commands are described in detail in the "Programming Manual for -B Instruments". (Note: this manual also includes some commands that are not implemented in this instrument. They can be ignored.) | <u>Keyword</u> | <u>Parameter</u> | Notes | |--|---|--| | LOCAL OUTPut: :[STATe] :PROTection :TRIPped? REMOTE | <boolean value=""></boolean> | [query only] | | [SOURce]: :FREQuency [:CW FIXed] [SOURce]: :PULSe | <numeric value=""></numeric> | | | :PERiod
:DCYCle
:HOLD
:DELay | <numeric value=""> <numeric value=""> WIDTh DCYCle <numeric value=""></numeric></numeric></numeric> | | | :GATE
:TYPE
:LEVel
[SOURce]: | ASYNC SYNC
High LOw | | | :VOLTage
[:LEVel]
[:IMMediate]
[:AMPLitude]
:PROTection
:TRIPped? | <numeric value=""> EXT</numeric> | ernal
[query only] | | STATUS: :OPERation :[EVENt]? :CONDition? | | [query only, always returns "0"] | | :ENABle
:QUEStionable
:[EVENt]? | <numeric value=""></numeric> | [query only, always returns "0"]
[implemented but not useful]
[query only, always returns "0"] | | :CONDition?
:ENABle
SYSTem: | <numeric value=""></numeric> | [query only, always returns "0"]
[implemented but not useful] | | :COMMunicate
:GPIB
:ADDRess
:SERial | <numeric value=""></numeric> | | | :CONTrol
:RTS
:[RECeive]
:BAUD | ON IBFull RFR
1200 2400 4800 96 | .00 | | :BITS
:ECHO
:PARity | 7 8
<boolean value=""></boolean> | | | :[TYPE]
:SBITS | EVEN ODD NON
1 2 | NE | | :ERRor
:[NEXT]?
:COUNT?
:VERSion?
TRIGger: | | [query only]
[query only]
[query only] | |--|------------------------------|--| | :SOURce | INTernal EXTernal N | MANual HOLD IMMediate | | *CLS | | [no query form] | | *ESE
*ESR? | <numeric value=""></numeric> | [muon cont d | | *IDN? | | [query only]
[query only] | | *OPC | | [query only] | | *SAV | 0 1 2 3 | [no query form] | | *RCL | 0 1 2 3 | [no query form] | | *RST | | [no query form] | | *SRE | <numeric value=""></numeric> | | | *STB? | | [query only] | | *TST? | | [query only] | | *WAI | | [no query form] | Feb 27/04 .