AVTECH ELECTROSYSTEMS LTD.
 NANOSECOND WAVEFORM ELECTRONICS
 ENGINEERING - MANUFACTURING

BOX 5120 . STN. "F"
OTTAWA. ONTARIO
CANADA K2C 3 H 4 TEL: (613) 226-5772
FAX: (613) 226-2802

WAFRANTY

Avtech Electrosvstems Ltd. warrants oroducts of its manufacture to be free from defects in material and wortimanshio under conditions of normal use. If. within one vear after deliverv to the oriainal owner. and after oreoaid return bv the oriainal owner. this Avtech oroduct is found to be defective. Avtech shall at its ootion repair or realace Eaid defective item. This warrantv does not anolv to units which have been dissembled. modified or subiected to conditions exceedina the aoolicable soecifications or ratinos. This warrantv is the extent of the obliaation or liabilitv assumed bv Avtech with resoect to this oroduct and no other warrantv or ouarantee is either exoressed or imalied.

Fig. 1
PULSE GENERATOR TEST ARRANGEMENT

Notes:

1) The bandwidth canability of comoonents and instruments used to disolav the qulse qenerator outout sional (attenuators. cables. connectors. etc.) should exceed one aiaahertz.
2) The use of bo db attenuator at the samoling scode vertical inout channel will insure a geak inout sional to the samoling scooe of less than one volt.
3) The svnc outout channel orovides TTL level sionals. To avoid overdriving the TRIG inout channel of some semolina scones. a 50 db attenuator should be olaced at the inout to the samoling scooe triader channel.
4) To otaßin a stable outout disalav the FFF and FFF FINE controls on the front danel should be set mid-ranoe. The front qanel TRIG toade switch should be in the INT oosition. The front oanel DELAY control and the scone triaderina controls are then adiusted to obtain a stable outout. The scode mav then be used to set the desired PRF bv rotatina the FFF and PRF FINE controls. The main outout is delaved with resoect to the SYNC outout bv about 0 to 150 nsec devending on the DELAY contral settina.
5) The outout oulse width is controlled bv means of the one turn ootentiometer (FW). The oot should initiallv be set mid-ranae and the oulse width adiusted usina an oscilloscobe. The outaut will deaenerate to an imoulse and eventuallv vanish as the oot is turned fullv counter clockwise. Units with the $-W$ ontion are shioned with an 8 inch lenath of FG-58 cable connected between oorts A and B on the back oanel. This cable orovides a maximum FW of about 100 nsec. The PW oot control is active over about 90° with this cable. The maximum FW mav be extended un to 400 nsec bv attachino RG-58 cable lenoths of about 100 feet between oorts A and B. With 100 feet of cable attached. the FW oot contral is active over about OO°. The maximum attainable FW varies inearily with cable lenoth for cable lenaths between $G^{\prime \prime}$ and 100 feet. CAUTION: Insure that the inout oower is off before attemotino to chanae the cable between oorts A and B. Fotentials as hiah as 400 V exist on the centre conductor between oorts A and B.
6) The outout oulse amolitude is controlled bv means of the one turn ootentiometer (AMP) and the HIGH-LOW switch adiacent to the AMP contral. With the switch in the HIGH oosition. the outout amolitude is variable over the ranoe of 75 to 170 volts while in the LOW oosition the outout amolitude is variable over the ranoe of about o to 150 volts.
7) Fise time. The rise time is variable from about 2 to 10 ns using the front panel 10 position TF switch. The fall time is fired at 2 ns for output amplitudes less than about 100 volts. For amplitudes near maximum, there will be some increase of fall time as the rise time is increased.
8) The output amplitude may be controlled electronically by placing the rear panel EA switch in the $O N$ position and applying 0 to +10 volts to the EA solder terminal. Note that the front panel manual amp control is still functional when the EA switch is in the ON position (EA option).
9) An external clock may be used to control the output PRF of the AVL unit by setting the front panel TFig toggle switch in the EXT position and applying a 0.2 usec (approx.) TTL level pulse to the TRIG ENC connector input (50 ohm input). For operation in this mode, the scope time base must also be triggered by the external clack rather than from the SYNC output. WAFNING: Model AVL-2A may fail if triggered at a FRF greater than 20 KHz .
10) Model AVL-2A can withstand an infinite USWR on the output port but is intended for operation with 50 ohm loads.
11) NOTE: The lifetime of the switching elements in the pulse generator module is proportional to the running time of the instrument. For this reason the prime power to the instrument should be turned off when the instrument is not in use. In the case of failure, the switching elements are easily replaced following the procedure described in the fallowing section.
12) The desired DC offset is applied to the back panel $0 S$ terminals which are connected to the output centre conductor via a high quality FF inductor. Do not exceed $\pm 100 \mathrm{~V}, 0.1 \mathrm{amp}$. (option).
13) The back monitor output provides an attenuated replica (20 db down) of the output less DC offset. The monitor output is designed to operate into a 50 ohm load. (option).

Fig. 2

(1) ON-OFF Switch. Applies basic prime power to all stages.
(2) FFF Control. Varies FFF from about 50 Hz to about 5 KHz = The operating FRF should be set using a sampling scope.
(3) FFF FINE Contrgl. This control varies FFF but is about 10 times less sensitive than the main FRF contral.
(4) DELAY Control. Controls the relative delay between the reference output pulse provided at the SVNC output (5) and the main output (8). This delay is variable over the range of about 0 to 150 nsec.
(5) SYNC Dutput. This output precedes the main output (日) and is used to trigger the sampling scope time base. The output is a TTL level 100 nsec (approk.) pulse capable of driving a fifty ohm load.
(a) FW Control. A one-turn control which varies the output pulse width from 0 to 100 nsec (to 400 nsec for $-W$ option).
(7) AMF Control. The output pulse amplitude is controlled by means of the one-turn potentiometer (AMF) and the HIGH-LOW switch adjacent to the AMF control. With the switch in the HIGH position, the output amplitude is variable over the range of 75 to 170 valts while in the LOW position the output amplitude is variable over the range of about 0 to 150 volts.
(B) GUT Connector. BNC connector provides output to a fifty ohm load.
(10) TFIG Input. The external trigger signal is applied at this input when the EXT toggle switch is in the EXT position. The output pulse at (8) appears about 50 nser after the application of the TRIG pulse.
(11) FISE TIME Control (Option). Varies rise time in one manosecond increments fram about two to ten nanaseconds.

Fig. 3
BACK PANEL CONTROLS

(3) MONITOR Dutput. The back monitor output provides an: attenuated replica (20 db down) of the output $1 e s 5$ DC offset. The monitor output is designed to operate into a 50 ohm load. (Option).

DC Offset. The desired DC offset is applied to the back: panel 05 terminals which are connected to the output centre conductor via a high quality RF incuctor. Do not exceed +100W, 0.1 ampe (Option).
FUSED CONMECTOF, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord $i s$ adjusted to select the desired input operating voltage. The unit also contains the main power fuse.

FW Fange Cable. Units with the -W option are shipped with an 8 inch length of $\mathrm{FG}-58$ cable connected between ports A and B on the back panel. This cable provides a maximum FW of about 100 nsec. The PH pot contral is active over about 90° with this cable. The maximum $P W$ may be extended up to 400 nsec by attaching FG-5B cable lengths of about 100 feet between ports A and B. With 100 feet of cable attached, the FW pot control is active over about Jo0'. The maximum attainable FW varies linearily with cable length for cable lengths between $6^{\prime \prime}$ and 100 feet.
CAUTION: Insure that the input power is off before attempting to change the cable between ports A and E. Fotertiais as high as 400V exist on the centre conductor between ports A and E.

QUTFUT FOLAFITY CONTFOL (Option). With switch in (F) position, output is positive. With switch in (N) position, output pulse is negative.

EA option switch with switch in the OFF position, output amplitude is controlled by the front panel AMF contral. With the EA switch in the ON position, the output amplitude may be controlled electronicaliv by applying 0 to +10 volts to the EA solder terminal (GB). Wote the front panel manual amp control is stili funtional when the EA switch is in the ON position.

EA solder terminal See bA above.

Fig. 1
Notes:

1) All module chassis are grounded to main chassis and to each other via separate ground lines.
2) WARNING: The line connecting pin 1 of AVL-2A-PS to pin 6 of AVL-2A-PG is a potential of 375 to 400 volts.
3) WARNING: Eefore attempting any repairs, note that potentials as high as 400 volts are empioyed in the chassis structure.
4) The pulse generator is constructed from the foliowing basic subsystems or modules:
a) Metal chassis
b) Fulse generator moduie (AVL-2A-FG)
c) Power supply module (AVL-2A-FS)
d) Cloc! module (AVL-2A-CL)
e) Power supply board

The three modules are interconnected as shown in Fig. 1.
3) If no output pulse is provided by the AVL-2A unit, turn off the prime power supply and remove the top cover panel by removing the four Fhiilips screws on the back side of the instrument. The top cover will then siide out to expose the interior. Apply a scope probe or voltmeter to pin b of the AVL-2A-PG unit. Turn on the prime power supply. A voltage of about 360 to 380 volts should be read at pin 6. If the voltage is zero or much less than 380 volts, then one of the switching transistors (Fart No. SLS) in the AVL-2A-FG module has probably failed. WAFNING: The cases of the transistors are at potentials as high as 380 volts. With the prime power supply off remove one of the transistors by removing the two $2-56$ screws which secure the transistor in its socket. Fuil the transistor out of the socket. With the unit un-triggered turn on the prime power supply and measure the voitage from the case of the remaining transistor to ground. If the voltage is about 360 to 390 volts then the transistor which was removed is defective and should be repiaced. If the voltage which is measured is less than 360 volts then the transistor still in position is defective and should be replaced. Note that the two transistors are completely interchangeable (Or-der Avtech Fart No. SLЗ). Note that with both transistors removed, the voitage at pin b on the AVL-2A-FG module should be in the range of 360 to 380 volts. If the voltage is less then the AVL-2A-FS module must be replaced.

The AUL-2A-CL module is functioning properly if:
a) The TTL level output at pin 2 varies from 50 Hz to Ξ KHz as the fRF controi is varied.
b) The relative delay between the output at pins 2 and 3 varies by about 100 to 200 nsec as the DELAY control is varied.

To Fig. 1

The AVL-2A-C consists of the three standard modules and a oower suodlv board which suodiies +15 volts (600 mA max) to the oulse qenerator modules. In the event that the AVL-2A unit malfunctions. remove the instrument cover bv removino the two screws on each side of the unit. therebv exposina the modules. Measure the voltaqe at the $+15 V$ oin of the $P G$ module. If this voltage is substantially less than +15 volts. unsolder the line connectino the nower supolv board and $P G$ module and conmect a 50 ohm 10 W load to the oower suoolv outbut. The voltaoe across this load should be about 15 V DC. If this voltage is substantiallv less than 15 volts the power sunolv board is defective and should be repaired or reolaced. If the voltage is near $+15 y$ then see instructions in orecedina section.

```
Scchroff 07.19.91
-EA
-os
-M
-PN
```

