AVTECH ELECTROSYSTEMS LTD.
NANOSECOND WAVEFORMELECTRONICS SINCE 1975
P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265

TEL: (315) 472-5270
FAX: (613) 226-2802

TEL: 1-800-265-6681
FAX: 1-800-561-1970
e-mail: info@avtechpulse.com
http://www.avtechpulse.com
\square P.O. BOX 5120 STN.F OTTAWA, ONTARIO CANADA K2C $3 \mathrm{H}_{4}$ TEL: (613) 226-5772
FAX: (613) 226-2802

INSTRUCTIONS

MODEL AVO-2L-C
0 TO 2 Amp, 0.5 ns RISE TIME
20 kHz LASER DIODE DRIVER

SERIAL NUMBER:

\qquad

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

TECHNICAL SUPPORT

Phone: 613-226-5772 or 1-800-265-6681
Fax: 613-226-2802 or 1-800-561-1970
E-mail: info@avtechpulse.com
World Wide Web: http://www.avtechpulse.com

TABLE OF CONTENTS

WARRANTY 2
TECHNICAL SUPPORT. 2
TABLE OF CONTENTS. 3
INTRODUCTION 4
SPECIFICATIONS. 5
EC DECLARATION OF CONFORMITY 6
INSTALLATION 7
VISUAL CHECK. 7
POWER RATINGS 7
CONNECTION TO THE POWER SUPPLY. 7
ENVIRONMENTAL CONDITIONS 7
FUSES 8
AC FUSE REPLACEMENT 8
DC FUSE REPLACEMENT 9
FUSE RATINGS 9
FRONT PANEL CONTROLS 10
REAR PANEL CONTROLS 12
GENERAL INFORMATION 13
BASIC TEST ARRANGEMENT 13
OUTPUT MODULE 13
BASIC PULSE CONTROL 14
LENZ'S LAW AND INDUCTIVE VOLTAGE SPIKES. 14
MECHANICAL INFORMATION 16
TOP COVER REMOVAL 16
ELECTROMAGNETIC INTERFERENCE 16
MAINTENANCE 17
REGULAR MAINTENANCE 17
CLEANING 17
PERFORMANCE CHECK SHEET 18

INTRODUCTION

The AVO-2L-C is a high performance instrument capable of generating 0 to 2 A at repetition rates up to 20 kHz . The rise and fall times are less than 0.5 ns . The AVO-2L-C includes an internal trigger source, but it can also be triggered by an external source. The AVO-2L-C consists of two parts, the mainframe and the output module. The mainframe is a voltage pulser, designed to operate into 50 Ohm loads. The output module contains a current-doubling transformer, which requires a load impedance of approximately 12.5 Ohms (e.g., a 10 Ohms resistor in series with a diode with 2.5 Ohms of parasitic resistance). The amplitude at the output of the output module (Vout) can vary from 0 to 25 V , when operating into a 12.5 Ohm load, providing up to 2 A of current.

When driving a diode load in series with a resistor, the diode current is given by:

$$
I_{\text {DIODE }}=\left(V_{\text {OUT }}-V_{\text {DIODE }}\right) /\left(R_{\text {SERIES }}+R_{\text {DIODE }}\right)
$$

where $V_{\text {DIODE }}$ is the voltage drop across the diode, $\mathrm{R}_{\text {DIODE }}$ is the parasitic resistance of the diode, and $R_{\text {SERIES }}$ is the resistance of the series resistor. $R_{\text {SERIES }}+R_{\text {diode }}$ should be equal to 12.5 Ohms.

This instrument is intended for use in research and development laboratories.

SPECIFICATIONS

Model:	AVO-2L-C
Amplitude: "-P" units: "-N" units: "-PN" units:	0 to +2 A (0 to +25 Volts into 12.5 Ohms) 0 to -2 A (0 to -25 Volts into 12.5 Ohms) 0 to $\pm 2 \mathrm{~A}$ (0 to ± 25 Volts into 12.5 Ohms)
Pulse width:	2 to 20 ns
Rise time:	$\leq 0.5 \mathrm{~ns}$
Fall time:	$\leq 0.5 \mathrm{~ns}$
PRF:	1 Hz to 20 kHz
Output impedance:	$\approx 12.5 \Omega$
Propagation delay:	$\leq 200 \mathrm{~ns}$ (Ext trig in to pulse out)
Jitter:	$\pm 100 \mathrm{ps} \pm 0.03 \%$ of sync delay (Ext trig in to pulse out)
Trigger required:	External Mode: +5 Volt, 50 ns or wider (TTL)
Sync delay:	Sync out to pulse out: Variable 0 to 200 ns
Sync output:	+ 3 Volts, 200 ns , will drive 50 Ohm loads
Connectors:	Out: solder terminals, Trig: BNC, Sync: BNC, Gate: BNC
Power, AC:	$120 / 240$ Volts (switchable) $50-60 \mathrm{~Hz}$
Dimensions:	Mainframe: $100 \times 215 \times 375 \mathrm{~mm}\left(3.9^{\prime \prime} \times 8.5^{\prime \prime} \times 14.8^{\prime \prime}\right)$ Transformer Module: $23 \times 28 \times 38 \mathrm{~mm}\left(0.9^{\prime \prime} \times 1.1^{\prime \prime} \times 1.5^{\prime \prime}\right)$
Chassis material:	anodized aluminum, with blue plastic trim
Mounting:	Any
Temperature range:	$+15^{\circ}$ to $+40^{\circ} \mathrm{C}$

EC DECLARATION OF CONFORMITY

We
Avtech Electrosystems Ltd.
P.O. Box 5120, LCD Merivale

Ottawa, Ontario
Canada K2C 3H4
declare that this pulse generator meets the intent of Directive 89/336/EEC for Electromagnetic Compatibility. Compliance pertains to the following specifications as listed in the official Journal of the European Communities:

EN 50081-1 Emission
EN 50082-1 Immunity
and that this pulse generator meets the intent of the Low Voltage Directive 72/23/EEC as amended by $93 / 68 / E E C$. Compliance pertains to the following specifications as listed in the official Journal of the European Communities:

EN 61010-1:2001 Safety requirements for electrical equipment for measurement, control, and laboratory use

INSTALLATION

VISUAL CHECK

After unpacking the instrument mainframe and the transformer module, examine to ensure that they have not been damaged in shipment. Visually inspect all connectors, knobs, and handles. Confirm that a power cord and an instrumentation manual (this manual), are with the instrument. If the instrument has been damaged, file a claim immediately with the company that transported the instrument.

POWER RATINGS

This instrument is intended to operate from $115 / 230 \mathrm{~V} \pm 10 \%, 50-60 \mathrm{~Hz}$. The instrument automatically switches between these two levels. Note, however, that different fuses are required for the two ranges, as described in the "FUSES" section.

The maximum power consumption is 57 Watts. This instrument is an "Installation Category Il" instrument, intended for operation from a normal single-phase supply.

CONNECTION TO THE POWER SUPPLY

An IEC-320 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket. The other end of the detachable power cord plugs into the local mains supply. Use only the cable supplied with the instrument. The mains supply must be earthed, and the cable used to connect the instrument to the mains supply must provide an earth connection. (The supplied cable does this.)

ENVIRONMENTAL CONDITIONS

This instrument is intended for use under the following conditions:

1. indoor use;
2. altitude up to 2000 m ;
3. temperature $5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$;
4. maximum relative humidity 80% for temperatures up to $31^{\circ} \mathrm{C}$ decreasing linearly to 50% relative humidity at $40^{\circ} \mathrm{C}$;
5. Mains supply voltage fluctuations up to $\pm 10 \%$ of the nominal voltage;
6. no pollution or only dry, non-conductive pollution.

FUSES

This instrument contains four fuses. All are accessible from the rear-panel. Two protect the AC prime power input, and two protect the internal DC power supplies. The locations of the fuses on the rear panel are shown in the figure below:

AC FUSE REPLACEMENT

To physically access the AC fuses, the power cord must be detached from the rear panel of the instrument. The fuse drawer may then be extracted using a small flat-head screwdriver, as shown below:

DC FUSE REPLACEMENT

The DC fuses may be replaced by inserting the tip of a flat-head screwdriver into the fuse holder slot, and rotating the slot counter-clockwise. The fuse and its carrier will then pop out.

FUSE RATINGS

The following table lists the required fuses:

Fuses	Mains Voltage	Rating	Case Size	Manufacturer's Part Number (Wickmann)	Distributor's Part Number (Digi-Key)
\#1, \#2 (AC)	115 V	$0.5 \mathrm{~A}, 250 \mathrm{~V}$, Time-Delay	$5 \times 20 \mathrm{~mm}$	1950500000	WK5041-ND
	230 V	$0.25 \mathrm{~A}, 250 \mathrm{~V}$, Time-Delay	$5 \times 20 \mathrm{~mm}$	1950250000	WK5035-ND
\#3 (DC)	$115 / 230 \mathrm{~V}$	$0.5 \mathrm{~A}, 250 \mathrm{~V}$, Time-Delay	$5 \times 20 \mathrm{~mm}$	1950500000	WK5041-ND
\#4 (DC)	Not used. A spare 0.5A fuse is installed in this position.				

The fuse manufacturer is Wickmann (http://www.wickmann.com/).
Replacement fuses may be easily obtained from Digi-Key (http://www.digikey.com/) and other distributors.

FRONT PANEL CONTROLS

1) POWER Switch. This is the main power switch.
2) OVERLOAD Indicator. When the instrument is powered, this indicator is normally green, indicating normal operation. If this indicator is yellow, an internal automatic overload protection circuit has been tripped. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a very low impedance), the protective circuit will disable the output of the instrument and turn the indicator light yellow. The light will stay yellow (i.e. output disabled) for about 5 seconds after which the instrument will attempt to re-enable the output (i.e. light green) for about 1 second. If the overload condition persists, the output will be disabled again (i.e. light yellow) for another 5 seconds. If the overload condition has been removed, the instrument will resume normal operation.

This overload indicator may flash yellow briefly at start-up. This is not a cause for concern.
3) PRF Range Switch. This switch sets the pulse repetition frequency (PRF) range of the internal oscillator. The marked value of each position is the upper limit of the 10:1 range, approximately. The vernier dial directly below the switch varies the PRF within the set range.

If this switched is set to the "EXT" position, the instrument is triggered by a signal
applied to the TRIG connector, rather than by the internal oscillator.
4) TRIG Connector. When the PRF Range Switch is set to "EXT", the instrument is triggered by a TTL pulse applied to this connector. The pulse must be at least 50 ns wide.

When the PRF Range Switch is set to one of the four internal oscillator ranges, this connector is an output, which supplies a $2 \mathrm{~V}, 200$ ns wide pulse for each trigger event. This output may be used to trigger oscilloscopes or other equipment.
5) Delay Controls. When the PRF Range Switch is set to one of the four internal oscillator ranges, the main output is advanced or delayed relative to the TRIG output pulse (item 3). The delay is variable up to 200 ns , approximately, using the DELAY and DELAY FINE dials.
6) Advance/Delay Switch. When the PRF Range Switch is set to one of the four internal oscillator ranges, this switch determines whether the TRIG output precedes the main output (ADVANCE mode), or whether the TRIG output occur after the main output (DELAY mode).
7) Pulse Width Control. This dial controls the pulse width.
8) Amplitude Control. This dial controls the pulse amplitude.
9) OUT Connector. This SMA connector provides the output to the AVO-2L-T module.

REAR PANEL CONTROLS

1. AC POWER INPUT. An IEC-320 three-pronged recessed male socket is provided on the back panel for $A C$ power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket.
2. AC FUSE DRAWER. The two fuses that protect the $A C$ input are located in this drawer. Please see the "FUSES" section of this manual for more information.
3. DC FUSES. These two fuses protect the internal DC power supplies. Please see the "FUSES" sections of this manual for more information.
4. Monitor Output. (Option) The back panel monitor output port provides an output voltage to 50 Ohms which is twice the amplitude appearing at the AVO-2L-T output terminals. The diode load current can be computed as follows:

$$
l_{\text {DIODE }}=\left(V_{\text {MON }} / 2-V_{\text {DIODE }}\right) /\left(R_{\text {SERIES }}+R_{\text {DIODE }}\right)
$$

where $\quad V_{\text {MON }}=$ Monitor output port voltage to 50 Ohm ,
$V_{\text {DIODE }}=$ voltage across the laser diode
$R_{\text {SERIES }}=$ resistance placed in series between AVO-2-T output and laser diode
$R_{\text {DIODE }}=$ diode parasitic resistance

GENERAL INFORMATION

BASIC TEST ARRANGEMENT

The AVO-2L-C should be tested with a sampling oscilloscope with a bandwidth of at least 2 GHz to properly observe the high-speed waveform. A typical test arrangement is shown below:

OUTPUT MODULE

The AVO-2L-C consists of two parts, the mainframe and the output module. The mainframe is a voltage pulser, designed to operate into 50 Ohm loads. The output module contains a current-doubling transformer, which requires a load impedance of approximately 12.5 Ohms (e.g., a 10 Ohms resistor in series with a diode with 2.5 Ohms of parasitic resistance). The amplitude at the output of the output module ($V_{\text {out }}$) can vary from 0 to 25 V , when operating into a 12.5 Ohm load, providing up to 2 A of current.

When driving a diode load in series with a resistor, the diode current is given by:

$$
I_{\text {DIODE }}=\left(V_{\text {OUT }}-V_{\text {DIODE }}\right) /\left(R_{\text {SERIES }}+R_{\text {DIIOE }}\right)
$$

where $\mathrm{V}_{\text {DIODE }}$ is the voltage drop across the diode, $\mathrm{R}_{\text {DIODE }}$ is the parasitic resistance of the diode, and $\mathrm{R}_{\text {SERIEs }}$ is the resistance of the series resistor. $\mathrm{R}_{\text {SERIES }}+\mathrm{R}_{\text {DIIOD }}$ should be equal to 12.5 Ohms.

The AVO-2L-T module connects to the AVO-2L mainframe via a 2 -foot long miniature coaxial cable. $1 / 4$ watt carbon film or carbon composition resistors may be used for $R_{\text {series }}$ but all leads must be as short as possible (< 0.1 inch). Solder leads directly to the GND and OUT terminals.

CAUTION: Use moderate heat when soldering to the OUT terminal.

BASIC PULSE CONTROL

This instrument can be triggered by its own internal clock or by an external TTL trigger signal. When triggered internally, two mainframe output channels respond to the trigger: OUT and SYNC.

- OUT. This is the main output.
- TRIG. The TRIG pulse is a fixed-width TTL-level reference pulse used to trigger oscilloscopes or other measurement systems.

These pulses are illustrated below:

When triggered externally, the TRIG connector acts as an input. The delay controls do not function in this mode. Figure B illustrates this mode:

LENZ'S LAW AND INDUCTIVE VOLTAGE SPIKES

This instrument is designed to pulse resistive and diode loads and will exhibit a large output spike when used to drive a load with significant inductance (as predicted by LENZ'S LAW). For this reason the load should be connected to the output using low inductance leads (as short as possible).

The voltage developed across an inductance L (in Henries), when the current is changing at a rate given by $\mathrm{d}_{\text {LOAD }} / \mathrm{dt}$ (in Amps/sec), is: $\mathrm{V}_{\text {SPIKE }}=\mathrm{L} \mathrm{dl}_{\text {LOAD }} / \mathrm{dt}$.

MECHANICAL INFORMATION

TOP COVER REMOVAL

If necessary, the interior of the instrument may be accessed by removing the four Phillips screws on the top panel. With the four screws removed, the top cover may be slid back (and off).

Always disconnect the power cord before opening the instrument.
There are no user-adjustable internal circuits. For repairs other than fuse replacement, please contact Avtech (info@avtechpulse.com) to arrange for the instrument to be returned to the factory for repair.

食 Caution: High voltages are present inside the instrument during normal operation. Do not operate the instrument with the cover removed.

ELECTROMAGNETIC INTERFERENCE

To prevent electromagnetic interference with other equipment, all used outputs should be connected to shielded 50Ω loads using shielded 50Ω coaxial cables. Unused outputs should be terminated with shielded 50Ω BNC terminators or with shielded BNC dust caps, to prevent unintentional electromagnetic radiation. All cords and cables should be less than 3 m in length.

MAINTENANCE

REGULAR MAINTENANCE

This instrument does not require any regular maintenance.
On occasion, one or more of the four rear-panel fuses may require replacement. All fuses can be accessed from the rear panel. See the "FUSES" section for details.

CLEANING

If desired, the interior of the instrument may be cleaned using compressed air to dislodge any accumulated dust. (See the "TOP COVER REMOVAL" section for instructions on accessing the interior.) No other cleaning is recommended.

$$
\text { Guly } 1010.3
$$

