AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS
ENGINEERING . MANUFACTURING
P.O. BOX 265 OGDENSBURG NEW YORK 13669
(315) 472.5270

BOX 5120 STN. "F' OTTAWA. ONTARIO
© CANADA K2C 3H4
(613) 226.5772

TELEX 053.4591

INSTRUCTIONS

MODEL AVNN-1-C-IEM2-EA-EW-ED PULSE GENEFATOF:
S.N. 3 3064 (MOD)

WAFRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1
PULSE GENERATOR TEST ARRANGEMENT

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuatorss cables, connectorss etc.) should exceed ten gigahertz.
2) The use of 40 db attenuator at the sampling scope vertical input channel will insure a peak input signal to the sampling scope of less than one volt.
3) The TRIG output channel provides a 0.2 volt 10 nsec pulse.
4) To obtain a stable output display the FRF and PRF FINE controls on the front panel should be set mid-range while the FFF range switch may be in either range. The front panel TRIG toggle switch should be in the INT position. The front panel DELAY control and the scope triggering controls are then adjusted to obtain a stable output. It is recommended that the DELAY control first be set max counter clockwise and then turned clockwise until a stable display is obtained. The scope may then be used to set the desired FRF by rotating the PRF and PRF FIME controls and by means of the FFF range switch. The stability of the display on some sampling scopes is very sensitive to the trigger delay setting. particularly at high FRF (eg. 10 to 25 MHz). If necessarys consult your sample scope instructions manual for the proper triggering method.
5) The output pulse width is controlled by means of the front panel one turn FW control. The control should initially be set maximum clockwise and the pulse width adjusted using an oscilloscope. Rotation of the FW pot causes the position of the falling edge of the pulse to change. For the FFF range of 0 to 25 mHz the output pulse width is variable over the range of 0 to 10 nsec. The masimum attainable pulse width decreases to about 3 nsec at a FRF of 50 MHz . For FRF near 50 MHz the back panel BIAS toggle switch must be in the L position. For FFF between about 10 and 40 MHz the switch may be in either position but the attainable output pulse width is higher if the switch is in the L position. For PFF below about 10 MHz the switch must be in the H position in order to attain short rise times.
6) To voltage contral the output pulse width, remove the jumper wire between banana plugs A and B on the back panel and apply 0 to +10 o to connector B (Fin $\geqslant 10 k$). (EW option).
7) The output pulse amplitude is contpolled by means of the front panel one turn AMP control.
8) To voltage control the output amplitudes remove the jumper wire between banana plugs A and B on the back panel and apply 0 to +10 V to connector $\mathrm{B}\left(\mathrm{K}_{\mathrm{IN}} \geqslant 10 \mathrm{~K}\right)$. (EA option).
9) To DC offset the output pulse connect a DC power supply set to required DC offset value to the back panel terminals marked 0.5 . The maximum attainable DC offset voltage is ± 50 valts ffor units without the OT or EO option anly).
10) For units with the OT or ED options, the output DC offset is variable from +5 to -5 volts by means of the front panel one turn DFFSET control. The offset control may be turned off by means of the rear panel ON-GFF DFFSET switch.
11) For units with the E option, the output offset may be voltage controlled by removing the jumper wire between banana plugs A and E on the back panel and applying O to +10 volts to connector E \{ $\left.\mathrm{Kin}_{\mathrm{IN}} \geqslant 1 \mathrm{OK}\right\rangle$.
12) The unit provides a 200 psec rise time at the OUT port. The rise and fall time can be set at approximately 0.3 , $0.4,0.7,1.2$ and 2.0 nsec using the five position front panel TR switch. To use the switch connect the GUT port to the TRin port. The variable rise time output is then available at the TRour port.
13) An external clock may be used to control the output PRF of the AVMN unit by setting the front panel TRIG toggle switch in the EXT position and applying a 10 nsec (or wider) TTL level pulse to the TRIG ENC connector input. The AVMN unit triggers on the rising edge of the input trigger pulse. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the TFIG output.
14) WARNING: Model AUMN-C may fail if triggered at a FRF greater than 50.0 MHz .
15) The Model AVMN-C pulse generator can withstand an infinite VSWF on the output port.
16) Dual Folarity Option. To invert the output of the AVMN unit, connect the $A V X-2-T$ unit to the OUT port. An inverted pulse is then obtained at the OUT port of the AVX-2-T unit. To offset the inverted pulse; connect a lead from the rear panel os OUT banana plug to the DC terminal of the $A V X-2-T$ unit. The DC offset at the output of the $A V X-2-T$ unit is then controlled by the front panel GFFSET control.
17) The AVMN-C unit can be converted from 110 to $220 \mathrm{~V} 50-60$ Hz operation by adjusting the voltage selector card in the rear panel fused voltage selector-cable connector assembly.

Fig. 2
FRONT PANEL CONTROLS

(1) DN-OFF Switch. Applies basic prime power to all stages.
(2) FRF Control. FRF RANGE and FRF controls determine
(S) output FFF as follows:

	PRF	MIN	FRF	MAX
Range 1	10	KHz	50	KHz^{2}
Fange 2	50	KHz	250	KHz
Range 3	185	kHz	650	KHz
Fange 4	650	KHz	3.3	MHz
Range 5	3.3	MHz	13.3	MHz
Range 6	13	MHz	50	MHz

(4) DELAY Control. Controls the relative delay between the reference output pulse provided at the TRIG output (5) and the main output (日). This delay is variable over the range of 0 to at least 100 nsec.
(5) TRIG Qutput/Input. This output precedes the main output (9) and is used to trigger the sampling scope time base. The output is a 200 mV 10 nsec (approx) pulse capable of driving a fifty ohm load. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.
(6) FW Control. A one turn control which varies the output pulse width.
(7) AMF Control. A ane turn control which varies the output pulse amplitude from 0 to max output to a fifty ohm load.
(8) GUT Connector. SMA connector provides 200 psec rise time output to a fifty ohm load.
(9) EXT-INT Control. With this toggle switch in the INT positiong the PRF of the AVMN unit is controlled via an internal clock which in turn is controlled by the PRF controls. With the toggle switch in the EXT position, the AVMIN unit requires a 15 nsec (or wider) TTL level pulse applied at the TRIG input in order to trigger the output stages. In additiong in this mode, the scope time base must be triggered by the external trigger source.
(10) RISETIME TR \{Option). A five position switch which provides output rise and fall times of about 0.3, 0.4, 0.7. 1.2 and 2.0 nsec.
(11) TR IN. To use variable rise time option connect OUT port to TR IN port.
(12) IR DUT. With OUT port connected to TR IN porta provides output to 50 ohm 1 oad.
(13) DFFSET (Option). A one turn control for varying the output DC offset from -5 to +5 volts.

Fig. 4 BACK PANEL CONTROLS

(1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In additiong the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse.
(2) To voltage control the output DC offset, remove the jumper wire between banana plugs A and E and apply 0 to +10 V to connector B (RIN $\geqslant 10 \mathrm{~K}$). (ED option).
(2A) Two position switch which turns output DC offset oN or DFF. (EO or OT options).
(2E) With OFFSET ON-DFF switch in ON position, DC output offset potential appears at this terminal. To offset inverted pulse on AVMN units with dual polarity option (-FN) connect this terminal to the DC terminal of the AUX-2-T-OT module. (ED or OT options).
(ङ) To voltage control the output puise width, remove the jumper wire between banana plugs A and B and apply o to +10 V to connector $\mathrm{E}\left(\mathrm{Fin}_{\mathrm{IN}} \geqslant 10 \mathrm{~K}\right)$. (EW option).
(4) To voltage control the output amplitude, remove the jumper wire between banana plugs A and B and apply o to +10 V to connector E (Fixn $\geqslant 10 \mathrm{~K}$). (EA option).
(5) EIAS SWITCH. For operation in the FRF range of about 40 to 50 MHz , the BIAS switch must be in the L position. For FRF between 10 to about 40 MHz , the switch may be in either position but the attainable output pulse width is higher if the switch is in the L position. For PRF below about 10 MHz the switch must be in the H position in order to attain short rise times.

The AVMN-C consists of a pulse generator module (AVMN-FG), a clock module (AUMN-CL), a -5.8 volt power supply module (AUMN-PS) and a power supply board which supplies +24 volts (800 mA mas) to the pulse generator module. In the event that the unit malfunctions, remove the instrument cover by removing the four Phillips screws on the back panel of the unit. The top cover may then be slid off. Measure the voltage at the +24 V pin of the FG module. If this voltage is substantially less than t24 voltsy unsolder the line connecting the power supply and PG modules and connect 50 ohm 10 W load to the FS output. The voltage across this load should be about $+24 V$ DC. If this voltage is substantially less than 24 volts the F s module is defective and should be repaired or replaced. If the voltage across the resistor is near 24 volts, then the FG module should be replaced or repaired. The sealed PG module must be returned to Avtech for repair (or replacement). The clock module provides a 20 nsec TTL level trigger pulse at pin M to trigger the FG module and a 20 nsec $0.5 V$ sync pulse at pin 5 to trigger the sampling scope display device. The output at pin S precedes the output at pin M by 0 to 100 nsec depending on the DELAY control setting. With the INT-EXT switch in the EXT positions the clock module is disconnected from the FG module. The clock module is functioning properly if:
a) 10 nsec, or widerg outputs are observed at pins M and 5.
b) The PRF of the outputs can be varied over the range of 10 KHz to 50 MHz using the PRF, FRF FINE and PRF RANGE controls.
c) The relative delay between the pin M and 5 outputs can be varied by at least 100 nsec by the dELAY control.

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed.

Schroff 02.13.87 Edítion B1
-OT
-PN

- OS
-TR

