AVTECH ELECTROSYSTEMS LTD.
 NANOSECOND WAVEFORM ELECTRONICS
 ENGINEERING . MANUFACTURING

P.O. BOX 265 OGDENSBURG NEW YORK 13669 (315) 472.5270

BOX 5120 STN. "F" y OTTAWA, ONTARIO
Y CANADA K2C 3 H 4 (613) 226.5772 TELEX 053.4591

INSTRUCTIDNS

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect ta this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed ten gigahertz.
2) The use of 40 do attenuator at the sampling scope vertical input channel will insure a peak input signal to the sampling scope of less than one volt.
3) The sync output channel provides a 0.2 volt 10 nsec pulse.
4) To obtain a stable output display the PRF and PRF FINE controls on the front panel should be set mid-range while the PRF range switch may be in either range. The front panel TRIG toggle switch should be in the INT position. The front panel DELAY control and the scope triggering controls are then adjusted to obtain a stable output. It is recommended that the DELAY control first be set mas counter clockwise and then turned clockwise until a stable display is obtained. The scope may then be used to set the desired PRF by rotating the FFF and PRF FINE controls and by means of the PRF range switch. The stability of the display on some sampling scopes is verv sensitive to the trigger delay setting, particularly at high FRF (eg. 10 to 25 MHz). If necessary, consult your sample scope instructions manual for the proper triggering method.
5) The output pulse width is controlled by means of the front panel one turn PW control. The control should initially be set maximum clockwise and the pulse width adjusted using an oscilloscope. Rotation of the FW pot causes the position of the falling edge of the pulse to change. For the PRF range of 0 to 25 MHz , the output pulse width is variable over the range of 0 to 10 nsec. The maximum attainable pulse width decreases to about 3 nsec at a PRF of 50 MHz . For PRF near 50 MHz the back parel BIAS toggle switch must te in the L position. For PRF between about 10 and 40 MHz the switch mav be in either position but the attainable output pulse width is higher if the switch is in the L position. For PRF below about 10 MHz the switch must be in the H position in order to attain short rise times.
6) To voltage control the output pulse width, remove the jumper wire between banana plugs A and B on the back panel and apply 0 to +10 N to connector E ($R_{I N} \geqslant 10 K$) (EW option).
7) The output pulse amplitude is controlled by means of the front panel one turn AMP control.
8) To valtage control the output amplitude, remove the jumper wire between banana plugs A and B on the back panel and apply 0 to +10 V to connector B (RyN シ10K). (EA option).
9) To DC offset the output pulse connect a DC power supply set to required DC offset value to the back panel terminals marked 0.S. The maximum attainable DC offset voltage is ± 50 valts for units without the of or EO option only).
10) For units with the OT or ED options, the output DC offset is variable from +5 to -5 volts by means of the front panel one turn OFFSET control. The offset control may be turned off by means of the rear panel ON-OFF DFFSET switch.
11) For units with the $E D$ option, the output offset may be voltage contralled by removing the jumper wire between banana plugs A and B on the back panel and applying 0 to +10 volts to connector B ($\mathrm{RiN}_{\text {IN }}$ シ 10 K).
12) The rise and fall time can be set at approximately 0.2, $0.3,0.6,1.2$ and 2.0 nsec using the five position front panel TR switch.
13) An external clock may be used to control the output PRF of the AUMN unit by setting the front panel TRIG toggle switch in the EXT position and applying a 10 nsec (or wider) TTL level pulse to the TRIG BNC connector input. The AVMN unit triggers on the rising edge of the input trigger pulse. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the SYNC output.
14) WARNING: Model AVMN-C may fail if triggered at a PRF greater than 50.0 MHz .
15) The Model AVMN-C pulse generator can withstand an infinite VSWR on the output port.
16) Dual Polarity Option. To invert the output of the AVMN unit, connect the AVX-2-T unit to the DUT port. An inverted pulse is then obtained at the OUT port of the AVX-2-T unit. To offset the inverted pulse, connect a lead from the rear panel OS OUT banana plug to the DC terminal of the $A V X-2-T$ unit. The DC offset at the output of the $A V X-2-T$ unit is then controlled by the front panel OFFSET control.
17) The AUMN-C unit can be converted from 110 to $220 \mathrm{~V} 50-60$ Hz poeration by adjusting the voltage selector card in the rear panel fused voltage selector-cable connector assembly.

Fig. 2
FRONT PANEL CONTROLS

(1) ON-OFF Switch. Applies basic prime power to all stages.
(2) PRF Control. PRF RANGE, FRF and PRF FINE controls

PRF MIN
PRF MAX

Range 1	10 KHz	50 KHz
Range 2	50 KHz	250 KHz
Range 3	185 KHz	650 kHz
Range 4	650 KHz	3.3 MHz
Range 5	3.3 MHz	13.3 MHz
Range 6	13 MHz	50 MHz

(4) PRF FINE Control. This control varies PRF but is about 10 times less sensitive than the main PRF control.
(5) DELAY Control. Contrals the relative delay between the reference output pulse provided at the SYNC output (6) and the main output (9). This delay is variable over the range of 0 to at least 100 nsec .
(6) SYNC Dutput. This output precedes the main output (9) and is used to trigger the sampling scope time base. The output is a 200 mV 10 nsec (approx) pulse capable of driving a fifty ohm load.
(7) FW Contral. A one turn control which varies the output pulse width.
(8) AMP Control. A one turn control which varies the output pulse amplitude from 0 to max output to a fifty ohm load.
(9) DUT Connector. SMA connector orovides output to a fifty ohm load.
(10) EXT-INT Control. With this toggle switch in the INT position, the PRF of the AVMN unit is controlled via an internal clock which in turn is controlled by the PRF and PRF FINE controls. With the toggle switch in the EXT position, the AUMN unit requires a 15 nsec (or wider) TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source.

TRIG Input. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.
(12) RISETIME TR (Ootion). A five position switch which provides output rise and fall times of about $0.2,0.3$, $0.6,1.2$ and 2.0 nsec.
(13) DFFSET (Option). A one turn control for varving the output DC offset from -5 to +5 volts.

Fig. 4
BACK PANEL CONTROLS

(1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this paint. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse.
(2) To voltage control the output DC offset, remove the jumper wire between banana plugs A and B and apply 0 to +10 N to connector B (Rin $\geqslant 10 火$). (ED option).
(2A) Twa position switch which turns output DC offset oN or DFF. (ED or $\square T$ options).
(2G) With OFFSET DN-OFF switch in ON position, DC output offset potential appears at this terminal. To offset inverted pulse on AVMN units with dual polarity option (-PN) connect this terminal to the DC terminal of the AVX-2-T-OT module. (ED or OT options).
(3) To voltage control the output pulse width, remove the jumper wire between banana plugs A and B and apply 0 to +10 V to connector $B\left(R_{x N} \geqslant 10 k\right.$). (EW option).
(4) To voltage control the output amplitude, remove the jumper wire between banana plugs A and B and apply 0 to +10 V to connector B (RiN $\geqslant 10 K$). (EA option).
(5) BIAS SWITCH. For operation in the PRF range of about 40 to 50 MHz , the BIAS switch must be in the L position. For FRF between 10 to. about 40 MHz , the switch may be in either position but the attainable output pulse width is higher if the switch is in the L position. For PRF below about 10 MHz the switch must be in the H position in order to attain short rise times.

The AVMN-C consists of a pulse generator module (AVMN-PG), a clock module (AVMN-CL), a -5.8 volt power supply module (AVMN-PS) and a power supplv board which supplies +24 volts (800 mA max) to the pulse generator module. In the event that the unit malfunctions. remove the instrument cover by removing the four Phillips screws on the back panel of the unit. The top cover may then be slid off. Measure the valtage at the +24 V pin of the PG module. If this voltage is substantially less than +24 volts, unsolder the line connecting the power supply and FG modules and connect 50 ohm 10 W load to the PS output. The voltage across this load should be about +24 V DC. If this voltage is substantially less than 24 volts the PS module is defective and should be repaired or replaced. If the valtage across the resistor is near 24 volts, then the PG module should be replaced or repaired. The sealed PG module must be returned to Avtech for repair (or replacement). The clock module provides a 20 nsec TTL level trigger pulse at pin M to trigger the PG module and a 20 nsec 0.5 V sync pulse at pin 5 to trigger the sampling scope display device. The output at pin 5 precedes the output at pin M by 0 to 100 nsec depending on the DELAY contral setting. With the INT-EXT switch in the EXT position, the clock module is disconnected from the PG module. The clock module is functioning properly if:
a) 10 nsec, or wider, outputs are observed at pins M and 5.
b) The PRF of the outputs can be varied over the range of 10 KHz to 50 MHz using the PRF, PRF FINE and PRF RANGE controls.
c) The relative delav between the pin M and S outputs can be varied by at least 100 nsec by the DELAY control.

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed.

