AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS

 ENGINEERING - MANUFACTURINGP.O. BOX 265

OGDENSBURG NEW YORK 13669
(315) 472-5270

BOX 5120 , STN. "F"
OTTAWA. ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772 FAX: (613) 226-2802 TELEX: 053-4591

INSTRUCTIONS

MODEL AVNC-S-C FULSE GENERATOR
S.N.:

WARFANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and warkmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cabless connectors, etc.) should exceed one gigahertz.
2) Front panel output ECL provides a -0.9, -1. 8 volt level ECL square wave (to 50 ohms, -2.0 valts) cavering the Fiff range of 10 kHz to 50 MHz when the front panel PRF range switch is in the A position. The FFFF is contralled by the six position FFF RANGE A switch and the ten turn PFF A contral. The device under test should be preceded by a 50 ohm -2 volt termination. The length of 50 ohm line L_{z} should not exceed several inches or the resulting reflection from the device under test will distort the ECL level waveforms. The length of 50 ohm line L_{1} can be of any length. The -2.0 volt is supplied from the rear panel of the AUNC mainframe.
3) Front panel output ECL provides a -0.9, -1.日 volt level ECL square wave (to 50 ohms, -2.0 volts) covering the PRF range of 50 MHz to 250 MHz when the front panel FRF range switch is in the B position. The PRF is controlled by the three position PFF RANGE B switch and the ten turn PRF B control.
4) Front panel output TTL provides a 5 volt square wave to 50 ohms covering the PRF range of 10 KHz to 50 MHz when the front panel FRF range switch is in the A position. The FRF is controlled by the six position FRF FANGE A switch and the ten turn FRF A contral.
5) The back panel M ports provides a coincident attenuated replica ($x 10$ to 50 ohms) of the front panel outputs. The use of an Avtech AVX-SF-S power splitter connected at the M output provides a convenient means for triggering the time bases of the oscilloscope and for displaying a replica of the output pulse. It is essential that the output ports of the AVX-5P-S unit be terminated in 50 ohms. Note that in the absence of an AVX-SF-S, the M ports may be connected directly to the TRIG IN port of the scope (use 50 ohm termination).
6) The AVNC-C unit can be converted from 110 to 220V 50-60 Hz operation by adjusting the voltage selector card in the rear panel fused voltage selector-cable connector assembly.
7) To voltage control the output FRF when in Finge A_{9} remove the jumper wire between A and E terminals on the back panel and apply 0 to +10 volts between the B terminal and ground (Rin $>$ iOK). EF option.
8) To voltage control the output FRF when in Fange $B_{\text {, }}$ remove the jumper wire between A and B terminals on the back panel and apply 0 to +10 valts between the B terminal and ground $\left(\mathrm{Fin}_{\mathrm{IN}}>10 \mathrm{~K}\right)$. EF option.

Fig. 2

FRONT PANEL CONTROLS

(1) \quad - N-OFF Switch. Applies basic prime power to all stages.
(2) RANGE A-E. When switch is in A position, outputs TTL and ECL provide square wave pulses covering FRF range of 10 KHz to 50 MHz . When switch in H pasition, output ECL provides square wave pulses covering PFF range of 50 MHz to 250 MHz .
(3) FRF A Control. PRF RANGE A and FRF FINE A controls output PRF as follows:

FRF MIN
FRF MAX

Range 1	10 KHz	50 KHz
Range 2	50 kHz	250 kHz
Range 3	185 KHz	650 KHz
Range 4	650 KHz	3.3 MHz
Range 5	3.3 MHz	13.3 MHz
Range 6	10.0 MHz	50 MHz

(4) FRF B Control. FRF RANGE B and FRF FINE B control output B FRF as follows:

	PRF MIN	FRF MAX
Fange 1	40 MHz	120 MHz
Range 2	50 MHz	200 MHz
Range 3	200 MHz	250 MHz

(5) GUTFUT ECL. Provides a -0.7, -1.8 volt level ECL square wave (to 50 ohms, -2.0 valts) covering the PRF range of 10 KHz to 250 MHz .
(6) OUTFUT TTL. Provides a +5 volt (to 50 ohms) square wave covering the PRF range of 10 KHz to 50 MHz .

Fig. 3 BACK PANEL CONTROLS

(1) FUSED CONAECTOF, VOLTAGE SELECTDR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse.
(2) MONITOF OUT. Pravides an attenuated (x10) coincident replica of output to fifty ohms.
(3) -2.OV OUT. Gutput voltage available for 50 ohm -2 volt termination of ECL out port.
(4) EFA. To voltage contral the output FRF when in Finge A, remove the jumper wire between A and B terminals on the back panel and apply 0 to +10 volts between the B terminal and ground (Rim $>10 k$). EF option.
(5) EFB. Ta valtage control the output PRF when in Fange B, remove the jumper wire between A and B terminals on the back panel and apply 0 to +10 volts between the B terminal and ground (RIN $>10 K$). EF option.

Fig. 4

Fig. 5

SYSTEM BLOCK DIAGRAM AVNC-3-C

Suchraff 04.04 .89
-M
$-E F$

