

AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS SINCE 1975

P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: (315) 472-5270 FAX: (613) 226-2802 TEL: 1-800-265-6681 FAX: 1-800-561-1970

e-mail: info@avtechpulse.com http://www.avtechpulse.com P.O. BOX 5120 STN. F OTTAWA, ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772 FAX: (613) 226-2802

INSTRUCTIONS

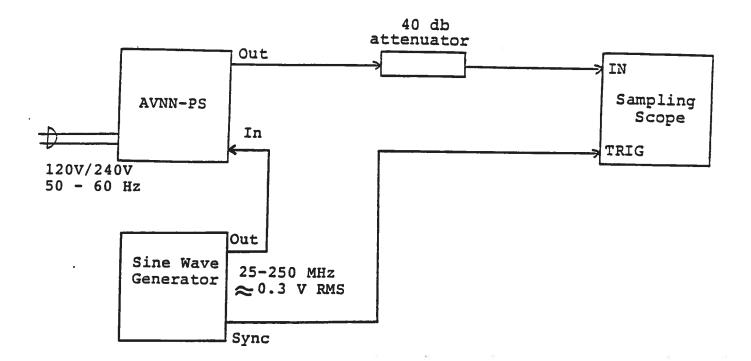
MODEL AVNN-PS PULSE GENERATOR

S.N.:

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units, which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

TECHNICAL SUPPORT


Phone: 613-226-5772 or 1-800-265-6681 Fax: 613-226-2802 or 1-800-561-1970

E-mail: info@avtechpulse.com
World Wide Web: http://www.avtechpulse.com

TABLE OF CONTENTS

WARRANTY	2
TABLE OF CONTENTS	3
FIG. 1: PULSE GENERATOR TEST ARRANGEMENT	4
PULSE GENERATOR TEST ARRANGEMENT	5
FIG. 2: FRONT PANEL CONTROLS	7
FRONT PANEL CONTROLS	8
FIG. 3-A: BACK PANEL CONTROLS	9
BACK PANEL CONTROLS	10
FIG. 3-B: BACK PANEL CONTROLS	11
BACK PANEL CONTROLS	12
FIG. 4: SYSTEM BLOCK DIAGRAM	13
FIG. 5: AVNN-1-PS-M-OT BLOCK DIAGRAM	14
SYSTEM DESCRIPTION AND REPAIR PROCEDURE	15
PERFORMANCE CHECK SHEET	16

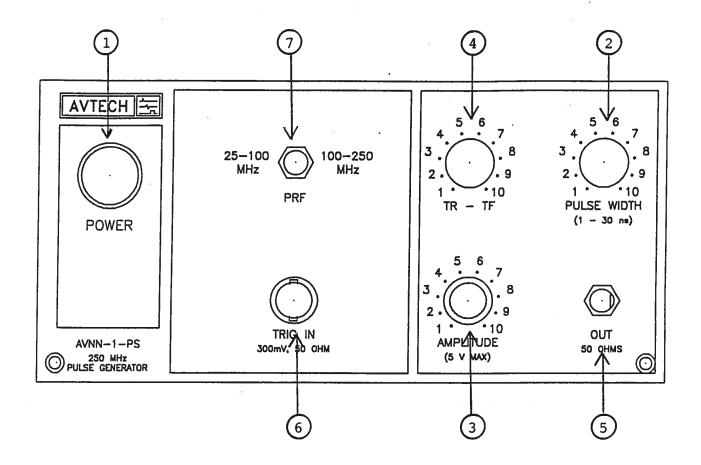
FIG. 1: PULSE GENERATOR TEST ARRANGEMENT

PULSE GENERATOR TEST ARRANGEMENT

- 1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed ten gigahertz.
- 2) The use of 40 db attenuator at the sampling scope vertical input channel will insure a peak input signal to the sampling scope of less than one volt.
- 3) To trigger externally, connect a sine wave generator to the IN connector. The output PRF will equal the sine wave PRF. The sine wave amplitude should be set at about 0.3 VRMS.
- 4) For operation below 100 MHz the frequency range switch should be in the LOW position while for operation above 100 MHz the switch should be in the HIGH position. However, position of this switch is not critical.
- 5) Clockwise rotation of the PW control increases the output duty cycle. Adjust for desired output pulse width (30 to 70% duty cycle).
- The desired output amplitude is controlled primarily by the AMP control and partially by the TR-TF control. The TR-TF control also serves to sharpen the rise and fall times and to flatten the pulse top. Several iterative adjustments of the AMP and TR-TF controls may be necessary to simultaneously obtain the desired output amplitude while maintaining excellent pulse rise-fall times and flatness.
- 7) To DC offset the output pulse connect a DC power supply set to required DC offset value to the back panel terminals marked O.S. The maximum attainable DC offset voltage is +50 volts (for units without the OT or EO option only).
- 8) For units with the OT or EO options, the output DC offset is variable from +5 to -5 volts by means of the front panel one turn OFFSET control. The offset control may be turned off by means of the rear panel ON-OFF OFFSET switch.
- 9) For units with the EO option, the output offset may be voltage controlled by removing the jumper wire between banana plugs A and B on the back panel and applying 0 to +10 volts to connector B (RIN > 10K).

- 10) Dual Polarity Option (for units without the OT or EO options). To invert the output of the AVNN unit, connect the AVX- 2-T unit to the OUT port. An inverted pulse with a rise time <100 psec is then obtained at the OUT port of the AVX-2-T unit. To offset the inverted pulse, apply the required DC level to the DC terminal of the AVX-2-T unit.
- 11) Dual Polarity Option (for units with the OT or EO options). To invert the output of the AVNN unit, connect the AVX- 2-T unit to the OUT port. An inverted pulse with a rise time <100 psec is then obtained at the OUT port of the AVX-2-T unit. To offset the inverted pulse, connect a lead from the rear panel OS OUT banana plug to the DC terminal of the AVX-2-T unit. The DC offset at the output of the AVX-2-T unit is then controlled by the front panel OFFSET control.
- The AVNN-C unit can be converted from 120 to 240V 50-60 Hz operation by 12) adjusting the voltage selector card in the rear panel fused voltage selectorcable connector assembly.
- 13) For additional assistance:

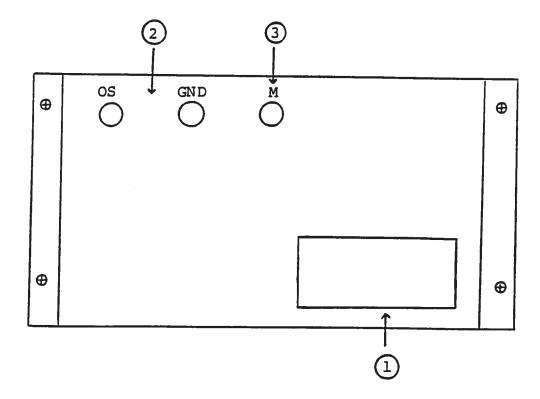
Tel:


613-226-5772

Fax:

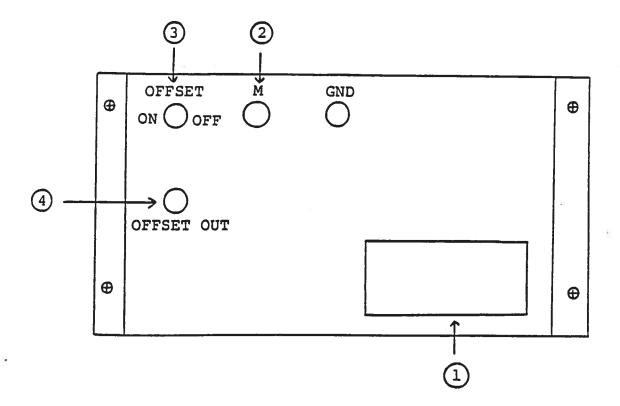
613-226-2802

E-mail: www.avtechpulse.com


FIG. 2: FRONT PANEL CONTROLS

FRONT PANEL CONTROLS

- (1) <u>ON-OFF Switch</u>. Applies basic prime power to all stages.
- (2) <u>PW Control</u>. One turn controls which vary the output pulse width (or duty cycle from about 30 to 70%).
- (3) AMP Control. A one turn control which varies the output pulse amplitude from 0 to max output to a fifty ohm load.
- (4) <u>TR-TF</u>. Controls flatness of pulse top and rise and fall time. Turn counter clockwise to smooth top and to decrease rise, fall time.
- (5) OUT Connector. SMA connector provides output to a fifty ohm load.
- (6) <u>IN</u>. The external trigger signal is applied at this input. (25-250 MHz sine wave, approx. 0.3 V RMS).
- (7) <u>FREQUENCY (LOW-HIGH).</u> For operation below 100 MHz switch should be in the LOW position. For operation above 100 MHz switch should be in the HIGH position (in order to obtain fastest rise time and smoothest pulse shape).


FIG. 3-A: BACK PANEL CONTROLS (UNITS WITHOUT -OT OR -EO OPTIONS)

BACK PANEL CONTROLS (UNITS WITHOUT -OT OR -EO OPTIONS)

- (1) <u>FUSED CONNECTOR, VOLTAGE SELECTOR</u>. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.5 Amp SB).
- (2) <u>DC OFFSET Input.</u> To DC offset the output pulse, connect a DC power supply set to the desired offset value to these terminals. The maximum allowable DC offset voltage is +50 volts.
- (3) MONITOR OUT M. Provides an attenuated (x10) coincident replica of the main positive output pulse to fifty ohms (option).

FIG. 3-B: BACK PANEL CONTROLS (UNITS WITH -OT OPTION)

BACK PANEL CONTROLS (UNITS WITH -OT OPTION)

- (1) <u>FUSED CONNECTOR</u>, <u>VOLTAGE SELECTOR</u>. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.5 Amp SB).
- (2) <u>MONITOR OUT M</u>. Provides an attenuated (x10) coincident replica of the main positive output pulse to fifty ohms (option).
- (3) <u>DC OFFSET</u>. To turn DC output offset OFF put toggle switch in OFF position.
- (4) OFFSET OUT. To offset an inverted output pulse, connect a lead from the OFFSET OUT terminal to the DC terminal of the AVX-2-T unit. The DC offset at the output of the AVX-2-T unit is then controlled by the front panel OFFSET control.

FIG. 4: SYSTEM BLOCK DIAGRAM

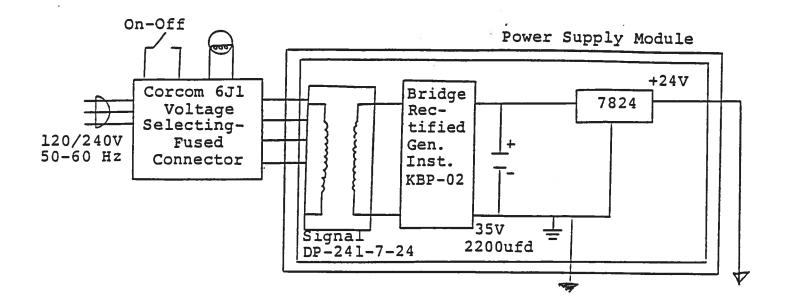
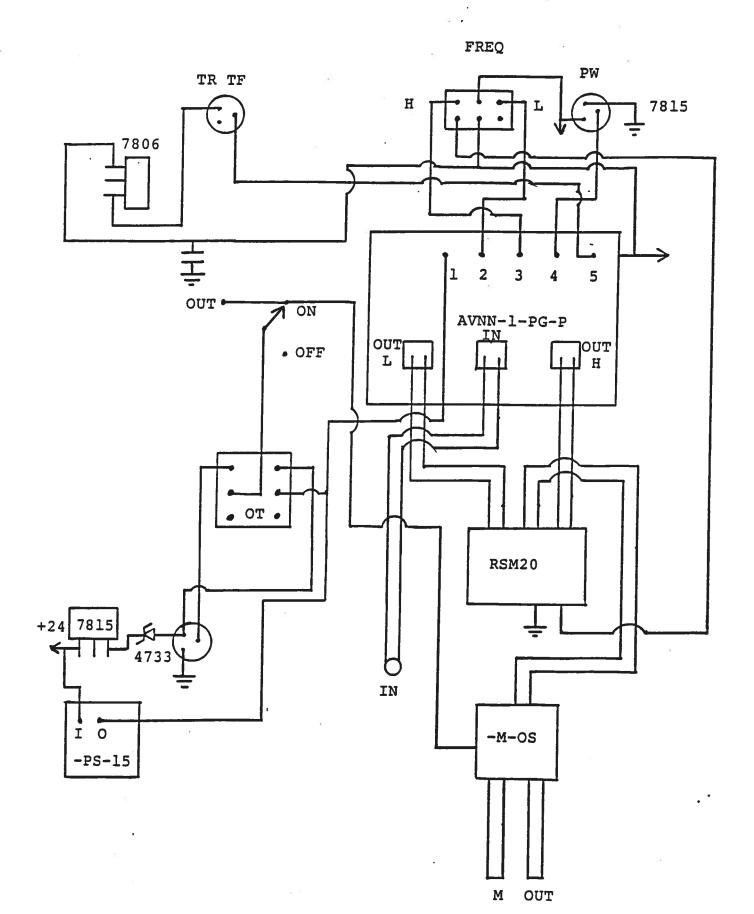



FIG. 5: AVNN-1-PS-M-OT BLOCK DIAGRAM

SYSTEM DESCRIPTION AND REPAIR PROCEDURE

The AVNN-PS-OT consists of a pulse generator module (AVNN- PG), a -15V power supply module (-PS-1S), an offset module (- OT), a coaxial switch (RSM20) and a power supply board, which supplies +24 volts (800 mA max) to the pulse generator modules. In the event that the unit malfunctions, remove the instrument cover by removing the four Phillips screws on the back of the unit. The top may then be slid off. Measure the voltage at the +24V pin of the PG module. If this voltage is substantially less than +24 volts, unsoder the line connecting the power supply and PG modules and connect 50 ohm 10 W load to the PS output. The voltage across this load should be about +24 V DC. If this voltage is substantially less than 24 volts the PS module is defective and should be repaired or replaced. If the voltage across the resistor is near 24 volts, then the PG module should be replaced or repaired. The sealed PG module must be returned to Avtech for repair (or replacement).