AVTECH ELECTROSYSTEMS LTD.
 NANOSECOND WAVEFORM ELECTRONICS
 ENGINEERING . MANUFACTURING

INSTFUCTIONS

MODEL AUNN-1-FS-ATT2 FULSE GENERATOR
S. N. =

WAFREANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If; within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

Notes:

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cablesg connectorss etc.) shouldexceed one gigahertz.
2) The device under test should be placed directly in the output of the AVNN-LDAD module. The length of 50 ohm line L_{2} should not exceed several inches or the resulting reflection from the device under test will distort the ECL level waveforms: The length of 50 ohm line L_{1} can be of any length. The AVNN-LDAD module contains the 50 ohm -2.0 volt termination required by the AVNN pulse generator. The -2.0 volt is supplied from the rear panel of the AVNN mainframe.
3) The back panel MA and ME ports provide a coincident attenuated replica ($\times 10$ to 50 ohms) of the front panel output A or qutput B. The use of an Avtech AvX-SF-Z power splitter connected at either the MA or MB monitor outputs provides a convenient means for triggering the time bases of the oscilloscope and for displaying a replica of the output pulse. It is essential that the output ports of the $A V X-S F-3$ unit be terminated in 50 ohms. Note that in the absence of an AVX-SF-S, the M ports may be connected directly to the TRIG IN port of the scope (use 50 ahm termination).
4) Front panel output A provides a -0.9 . -1.8 volt level ECL square wave (to 50 ohms, -2.0 volts) covering the FRF range of 10 kHz to 50 MHz when the front panel FFF range switch is in the A position. The FRF is contralled by the six position PRF RANGE A switch and the one turn FRF A control. Front panel output B and rear panel output MB are inactive when the pange switch is in position A.
5) Front panel output A provides a -0.9, -1.8 volt level ECL square wave (to 50 ohms: -2.0 volts) covering the PRF range of 50 MHz to 250 MHz when the front panel PRF range switch is in the B position. The PRF is controlled by the three position FFF RANGE E switch and the one turn PRF B control. Front panel output A and rear panel output MA are inactive when the range switch is in position B.
6) The AUNN-FS unit can be converted from 110 to $220 \mathrm{~S} 50-60$ Hz operation by adjusting the voltage selector card in the rear panel fused valtage selector-cable connector assembly.

Fig. 2 FRONT PANEL CONTROLS

(i)
(4) FRF B Control. FRF RANGE E and FRF FINE E control output E FFF as follows:

FRF MAX

50 kHz
250 kHz
650 kHz
3.3 MHz
$1 \mathrm{~S}, \mathrm{JMHz}$
50 MHz

FFF A Control. FRF RANGE A and FFF FINE A controls output A FFRF as follows:

FFF MIN

Range 1	10 kHz	50 kHz
Range 2	50 kHz	250 kHz
Range 3	185 kHz	650 KHz
Range 4	650 kHz	3.3 MHz
Range 5	3.3 MHz	13.3 MHz
Range 6	10.0 MHz	50 MHz

	FRF MIN	FRF MAX
Fange 1	40 MHz	120 MHz
Range 2	50 MHz	200 MHz
Fange 3	100 MHz	250 MHz

FRF MIN
(5) GUTPUT A. Frovides a -0.9 : -1.8 volt level ECL square Wave (to 50 ohms $_{g}-2.0$ volts) covering the FRF range of 10 KHz to 50 MHz when the front panel FFF range switch is in the A position. The FRF is controlled by the six position PRF FiANGE A switch and the one turn FFF A contral. Front panel output B and rear panel output MB are inactive when the range switch is in position A.
(6) OUTFUT E. Frovides a $-0.9 ;-1.8$ valt level ECL Square wave (to 50 ohms. -2.0 volts) covering the fRF range of 50 MHz ta 250 MHz when the front panel FRF range switch is in the B position. The PFF is controlled by the three position FFF FANGE B switch and the one turn FFF B contral. Front panel output A and rear panel output MA are inactive when the range switch is in position B_{μ}.

Fig. 3 BACK PANEL CONTROLS

(1) FUSED CONNECTOR, VOLTAGE SELECTOF. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse.
(2) MONITOF OUT MA. Frovides an attenuated ($\times 10$) coincident replica of output A to fifty ohms.
(3) MONITOR OUTPUT ME. Provides an attenuated (x10) coincident replica of output B to fifty ohms.
(4) $\quad 2=0 \mathrm{O}$ OUT. Connect to DC terminal of AVNN-LOAD module which is connected to output of AVNN mainframe.

Fig. 4

Fig. 5

Fig. 5
schroff 02.12 .87

