AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS

 ENGINEERING - MANUFACTURINGP.O. BOX 265 OGDENSBURG NEW YORK 13669
(315) 472-5270

BOX 5120 . STN. "F" TEL: (613) 226.5772 FAX: 16131226 2802 TELEX: 053-4591

INSTFUCTIONS

MODEL AVO-SB-C-FN-FWSC (MOD) FULSE GENEFATOR

$$
\text { S.N. }=5171 \text { (MOD) }
$$

WAFRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within ane year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

$$
\text { Fig. } 1 \text { PULSE GENERATOR TEST ARRANGEMENT }
$$

1) The equipment should be connected in the general fashion shown above. Since the AVO unit provides an output pulse rise time as low as 10 nsec a fast oscilloscope (at least 50 MHz and preferably 200 MHz) should be used to display the waveform. If a sampling scope is used, a 50 db (or greater) attenuator should be used to insure a peak input to the scope of less than 0. 5 volts.
2) The sync output channel provides TTL level signals. To avoid overdriving the TFig input channel of some sampling scopes, a SO db atteruator should be placed at the input to the sampling scope trigger channel.
3) The desired output polarity is selected by means of the front panel FOLAFITY switch. With the FOLAFITY switch in the F position, the negative output pulse generator is rendered inartive. Likewise, with the FOLAFITY switch in the N position, the positive pulse generator is rendered inactive.
4) Ta obtain a stable output display the FRF control on the front panel should be set mid-range. The front panel TRIG toggle switch should be in the INT position. The front panel DELAY control and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired Ffif by rotating the FRF control. The main output is delayed with respect to the SYNC output by about 0 to 200 nsec depending on the DELAY contral setting. CAUTION: The output duty cycle must not exceed 0.5% (eg. PFF \& 10 KHz at $\mathrm{FW}=500 \mathrm{nsec}$) .
5) The AVロ-5B-T-FWSCS module connects to the mainframe via a 50 ohm miniature coaxial cable approx 3 feet in length. The output terminals of the transformer module consists of a short length of microstrip transmission line protruding from the module chassis. The OUT terminal is the center conductor which is bounded on both sides by the ground plane (see below):

The diode laad and series resistor $440-50$ ohm 2 warbon composition resistor) should be connected between the DUT and GND terminals using very short leads (č O. 5 Em). The voltage across the resistor may be monitored using a high impedance pulse.

Diode shown for negative output. Reverse for positive output.

Take care to insure that during soldering the OUT conductor is not shorted to the chassis. Alsog use minimal heat when soldering.
6) The output pulse widths for the positive and megative outputs are controlled by means of the front panel ane turn FW control. To voltage control the pulse width. set the rear panel switch in the EXT positian and apply 0 to +10 volts between terminal A and ground (Fixn $>$ 10F). The pulse width is controlled digitally and consequently small jumps or steps in pulse width may be visible as the pulse width knob is adjusted. For some settings of the knob, the falling edge of the pulse may jitter between steps. This jitter may be removed either by a slight adjustment to the pulse width control knob or by setting the rear panel FW LATCH switch in the ON position. Note that with the LATCH switch in the ON position, the front panel FW control knob is disabled.
7) The output pulse amplitudes for the positive and negative outputs are controlled by means of the front panel one turn AMF contral. Ta voltage control the output, set the rear panel switch in the EXT position and apply 0 to +10 volts between terminal A and ground (FIxN ? 10K゙).
8) The output FFF is controlled by means of the front panel one turn PRF control. To voltage control the FFFFg set the rear panel switch in the EXT position and apply o to +10 volts between terminal A and ground (Fixm $>10 k$).
7) The output rise and fall time are controlled by the front panel FiSE TIME one turn control and by a two position switch (on each FG module) located in the interior of the instrument. The control ranges are as follows:

INTEFIDF SWITCH
FOSITION
L 10 to 20 ns
$\mathrm{H} \quad 20$ to 40 ns

The unit was shipped with the interior switch in the H position.
10) CAUTIDN: The rear panel 1.OA SB fuse may blow if the output duty cycle exceeds 0.5% (eg. FRF \& 10 kHz for FW $=500$ nsec).

Fig. 2 FRONT PANEL CONTROLS

(1) ON-DFF Switch. Applies basic prime power to all stages.
(2) FFF Control. Varies FRF from about 200 Hz to about 20 KHz . The operating FFF should be set using a scope.
(3) DELAY Control. Controls the relative delay between the reference output pulse provided at the SYNC output (4) and the main output (7). This delay is variable over the range of about 0 to 200 nsec.
(4) TRIE. This output precedes the main output (7) and is used to trigger the sampling scope time base. The output is a TTL level 100 nsec (approx) pulse capable of driving a fifty ohm load. The external trigger signal is applied at this input when the EXT-INT toggle switch (8) is in the EXT position. The output pulse at (7) appears about 60 nsec after the application of the TRIG pulse.
(5) FW Control. A one turn contral which varies the output pulse width from 25 to 500 nsec.
(6) AMF Control. The output pulse amplitude is controlled by means of the one turn potentiometer (AMP).
(7) DUT Connectors. 5MA connectors for miniature coaxial cables connected to the AVロ-5B-T module (positive and negative outputs).

EXT-INT Control. With this toggle switch in the INT position, the FFF of the AVO unit is controlled via an internal clock which in turn is controlled by the PRF and FRF FINE controls. With the toggle switch in the EXT position, the AVO unit requires a 0.2 usec TTL level pulse applied at the TRIG input in order to trigger the output stages. In additiong in this mode, the scope time base must be triggered by the external trigger source.

FOLAFITY Control. With the switch in the F position, the negative output pulse generator is rendered inactive. With the switch in the N position, the positive output pulse generator is rendered inactive.

EISE TIME. The output rise and fall time are controlled by the front panel FISE TIME one turn control and by a two position switch (on each Fig module) located in the interior of the instrument. The control ranges are as follows:

INTERIOR SWITCH FOSITION

1
$\mathrm{H} \quad 20$ to 40 ns
The unit was shipped with the interior switch in the H position.

Fig. 3
BACK PANEL CONTROLS

(1) FUSED CONNECTOF, VOLTAGE SELECTOR: The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse.
(2) MONITOR Dutput (M). Dutput voltage (to fifty ohms) at this point (V_{m}) can be related to AVO-SB-T-FWSCS output voltage (Vout) as follows (option):

$$
V_{\text {our }}=10 V_{m} \quad \text { (Volts) }
$$

(3) EA. To voltage control the output amplitude, set the switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Rixw y lok). (option).
(4) EW. To voltage control the output pulse width, set the switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Fixn > 1OK). (option).
(5) EF. To voltage control the output PRF, set the switch in the EXT position and apply O to +10 volts between terminal A and ground (Rin > lok). (option).
(6) 1.0 SE. Fuse which protects the output stage if the output duty cycle rating is exceeded.
(7) FOLAFITY. This terminal is at +5 volts DC (Fi_{L} y 10 K) if the pulse generator output is positive and at 0 volts if the output is negative ($\mathrm{F}_{\text {out }} \approx 200 \mathrm{ohm}$).
(8) FW LATCH. The pulse width is controlled digitally and cansequently small jumps or steps in pulse width may be visible as the pulse width knob is adjusted. For some settings of the knob, the falling edge of the pulse may jitter between steps. This jitter may be removed either by a slight adjustment to the pulse width control knob or by setting the rear panel FW LATCH switch in the ON position. Note that with the LATCH switch in the ON position, the front panel FW control knob is disabled.

The AVO-5B-C-PN unit consists of the following basic modules:

1) AVO-5B-PG pulse generator module (positive and negative)
2) AVO-5B-CL clock module
3) $+24 V$ power supply board

The modules are interconnected as shown in Fig. 4. The clock module controls the output FRF and the relative delay between the main output and the SYNC outputs. The PG pulse generator module generates the output pulse. In the event of an instrument malfunction, it is most likely that the rear panel 0.5A 5B fuse or some of the output switching elements (SL4T) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the cover plate on the bottom side of the instrument. NOTE: First turn off the prime power. The elements may be removed from their sockets by means of a needle nosed pliers. The SL4T is a selected UMOS power transistor in a 10220 packages and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SL4T switching elements, take care to insure that the short lead cof the three leads)' is adjacent to the black dot on the chassis. If the switching elements are not defective, then the four Fhillips screws on the back panel should be removed. The top cover may then be slid off and the operation of the clock and power supply modules checked. The clock module is functioning properly if:
a) 0.1 usec TTL level outputs are observed at pins 2 and 3.
b) The PRF of the outputs can be varied over the range of 200 Hz to 20.0 KHz using the PRF and PRF FINE controls.
c) The relative delay between the pin 2 and 3 outputs can be varied by at least 200 nsec by the DELAY control.

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed. The power supply board generates +24 V DC to power the other modules. If the voltage is less than +24 V , turn off the prime power and unsolder the lead from the 7824 regulator chip on the power supply board. Solder a 100 ohm 5 watt resistor to the 7824 output to ground and turn on the prime power. A voltage of +24 volts should be read. If the voltage is less then the power supply board is defective and should be repaired or replaced.

Schroff 01.23 .91
-EW
$-E A$
$-E F$
$-M$

