

AVTECH ELECTROSYSTEMS LTD.

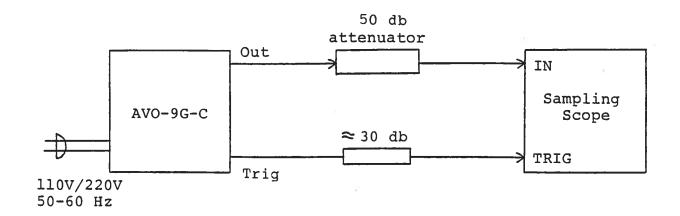
NANOSECOND WAVEFORM ELECTRONICS SINCE 1975

□ P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: (315) 472-5270 FAX: (613) 226-2802

TEL: 1-800-265-6681 FAX: 1-800-561-1970 U.S.A. & CANADA D BOX 5120 STN. F OTTAWA, ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772 FAX: (613) 226-2802

INSTRUCTIONS

MODEL AVX-S1-MI BIAS INSERTION UNIT


S.N.:

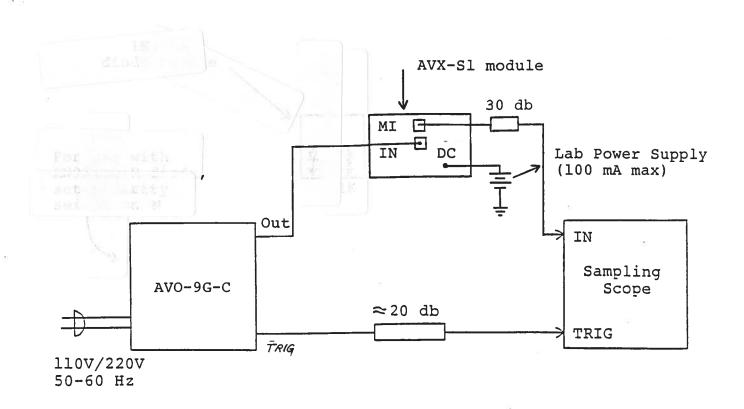
WARRANTY

products of Avtech Electrosystems Ltd. warrants its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

(AVX-S1 MODULE DISCONNECTED)

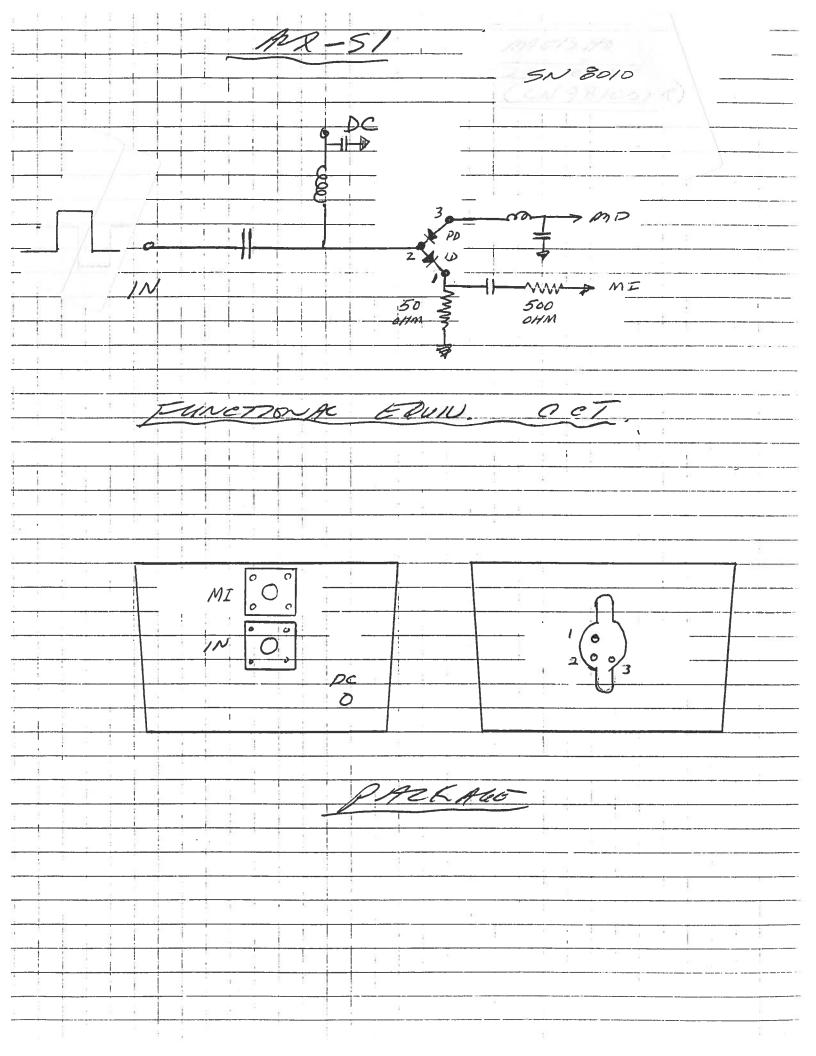
Notes:


- 1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 2 GHz.
- 2) The use of 50 dB attenuator at the scope vertical input channel will insure a peak input signal to the scope of less than one Volt (necessary only if sampling scope used). If a high impedance real time scope is used, the pulse generator should be terminated using a shunt 50 Ohm resistor.
- 3) The TRIG output channel provides TTL level signals. To avoid overdriving the TRIG input channel of some scopes, a 30 dB attenuator should be placed at the input to the scope trigger channel. The TRIG output precedes the main output when the front panel ADVANCE-DELAY switch is in the ADVANCE position. The TRIG output lags the main output when the switch is in the DELAY position.
- 4) To obtain a stable output display the PW and PRF controls on the front panel should be set mid range. The front panel TRIG toggle switch should be in the INT position. The DELAY controls and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired PRF by rotating the PRF controls.
- 5) The output pulse width is controlled by means of the front panel one turn PW control (ten turn control for units with -PWT option). To voltage control the pulse width, set the rear panel switch in the EXT position and apply 0 to +10 Volts between terminal A and ground ($R_{\text{IN}} > 10\text{K}$). (option).
- 5B) PW LOCK: Note that due to the digital nature of the EW option, some pulse width jitter may be observed at certain settings of the PW pot. This jitter may be removed by setting the rear panel PW LOCK switch in the ON position. When in the ON position the pulse becomes frozen and wil not change (as the PW pot is adjusted) until the switch is placed in the OFF position.
- 6) The output pulse amplitude is controlled by means of the front panel one turn AMP control (ten turn control for units with the -AT option). To voltage control the output, set the rear panel switch in the EXT position and apply 0 to +10 Volts between terminal A and ground ($R_{\text{IN}} > 10\text{K}$). (option).

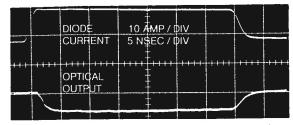
- 7) An external clock may be used to control the output PRF of the AVR unit by setting the front panel TRIG toggle switch in the EXT position and applying a 0.2 us (approx.) TTL level pulse to the TRIG BNC connector input. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the TRIG output.
- 8) AVO units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a short circuit), protective circuit will turn the output of instrument OFF and turn the indicator light ON. light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn ON (i.e. light OFF) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light ON) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:
 - Reducing PRF (i.e. switch to a lower range)
 - Reducing pulse width (i.e. switch to a lower range)
 - 3) Removing output load short circuit (if any)
- 9) The unit can be converted from 110 to 220V 50-60 Hz operation by adjusting the voltage selector card in the rear panel fused voltage selector-cable connector assembly.
- 10) For additional assistance:

Tel: (613) 226-5772 Fax: (613) 226-2802

Fig. 2 PULSE GENERATOR TEST ARRANGEMENT


(AVX-S1 MODULE CONNECTED)

- 1) A general description of the AVX-S1 module is given in the enclosed data sheet.
- The AVX-S1 module should be connected to the AVO-9G-C mainframe via the supplied 24" RG174 cable. The diode current may be monitored by connecting the MI output port to the sampling scope via a 40 db attenuator (MI option units only). The output amplitude (V_{MI}, Volts) and the diode current (Amps) are related as follows:


$$I_D = 0.2 V_{MI}$$

- 3) The laser diode plugs directly into the socket on the side of the AVX-S1 module.
- 4) A forward DC bias may be applied to the laser diode by connecting a DC potential of 0 to +5 volts to the DC solder terminal. The application of a small forward bias often yields a more ideal diode current waveform (as observed on the MI port). Note that the DC port must be shorted to ground if a bias is not applied.

AVTECH

LASER DIODE BIAS INSERTION UNITS

The AVX-S series of bias insertion units is designed for applying pulse or RF CW signals and DC bias to laser diodes which insert into a high quality socket included on the mount. The bias insertion module includes the necessary networks to match the laser diode to the pulse or RF source as well as networks for applying DC bias to the diode. Optional outputs allow for monitoring of the laser diode current, voltage and a photo detector diode output. Readily available socket configurations (TO-18, TO-5, TO-3, OP-3) are shown on the following page. Note that the laser diodes are not supplied with the AVX-S series.

The AVX-S series includes 3 basic models namely the AVX-S1, AVX-S2 and the AVX-S3. The basic functional equivalent circuit for the three models are shown below. Model AVX-S1 is specifically designed for ultra high-speed, low current applications (rise times as low as 200 ps, bandwidths to 1 GHz, I <1.0 ampere). Model AVX-S1 is employed in the AVO-9-C series of diode drivers. Model AVX-S2 is intended for application with rise times greater than 2 ns and currents above 1 ampere. Model AVX-S3 is specifically designed for use with the AVO-2 and AVO-5 series pulse generators (which provide currents in the range of 5 to 50 amperes).

The input series blocking capacitor in Models AVX-S1 and AVX-S2 presents a low impedance to RF CW signals and to baseband pulses while the shunt indicator presents a high impedance to RF (or pulse) signals but an extremely low impedance to the DC bias. The resistor in series with the laser diode is selected to insure that the impedance at the IN port is 50 ohms. Normally a laser diode resistance of 3 ohms is assumed.

The optional diode current monitor (M_{I}) provides an output waveform (to 50 ohms) which is an attenuated replica of the laser diode current. The output amplitude (V_{MI} , volts) and diode current (I_D , Amps) are related as follows:

-S1:
$$I_D = 0.2V_{MI}$$
 -S2: $I_D = V_{M}$

The optional diode voltage monitor (MV) provides an output waveform that may be related to the voltage across the laser diode (V_D , volts) as follows:

-S1:
$$V_D = 10 (V_{MV} - V_{MI})$$
 -S2: $V_D = 10 V_{MV}$

Socket mounting of laser diodes

Peak currents from 100 mA to 48 Amps

Pulse widths from 0.4 to 200 ns

• Rise times from 0.2 to 2.0 ns

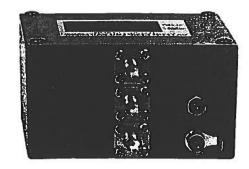
Pulse or CW RF

Diode current and voltage monitor options

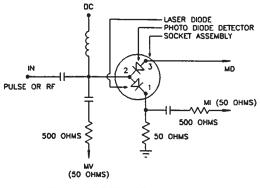
Model AVX-S3 is available in four different versions (AVX-S3A, AVX-S3B, AVX-S3C and AVX-S3D) all of which include a matching transformer which effectively boosts the laser diode current beyond that provided by the pulse source.

Model AVX-S3A is designed to match 50 ohm pulse generators such as Model AVO-2-C to 12 ohm loads with peak currents of 5 amperes. Consequently, the resistor RS in the equivalent circuit for this model is 10 ohm. This resistor is accessible in all AVX-S3 models and may be changed by the user (by desoldering). The series resistance of the laser diode and the resistor BS must equal the pulse generator source impedance divided by N². Consequently, if the series resistance of the laser diode is relatively high, it then may be necessary to reduce the value of RS. Model AVX-S3B is designed to match 50 ohm pulse generators such as Model AVO-5-C to 3 ohms and will provide peak diode currents up to 28 amperes. Model AVX-S3C is designed to match Models AVO-2W-C and AVO-2-C (25 ohm source impedance) to load resistance of about 5 ohms and will provide peak diode currents as high as 10 amperes. Model AVX-S3D is designed for use with Model AVO-5B-C and will provide up to 48 amperes of diode current.

Two optional SMA output connectors provide attenuated coincident replicas of the diode current (-MI option) and diode voltage (-MV option) as per the following relationships (Amps, Volts):


$$I_D = \frac{10 \text{ V}_{MI}}{\text{Rs}}$$
 $V_D = 10 \text{ (V}_{MV} \cdot \text{V}_{MI}\text{)}$

All AVX-S3 units include two foot long input cables with SMA male connectors.


When ordering members of the AVX-S family, the customer must specify the basic model number (eg. AVX-S1) and the following additional information.

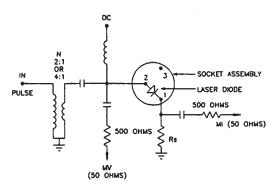
- a) Diode package type (eg. TO-18) and the required pin connections (eg. anode, cathode, ground etc). See the following page for readily available package mounting. Contact Avtech for special or different packages.
- b) Desired options (eg. -MI, -MV, -MD).

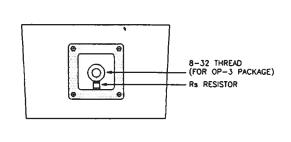
Contact Avtech for your special requirements.

Model:	AVX-S1	AVX-S2	AVX-S3A	AVX-S3B	AVX-S3C	AVX-S3D				
Peak diode current:	400 mA	2 Amps	5 Amps	28 Amps	10 Amps	48 Amps				
Max. input amplitude:	20 volts	100 volts	150 volts	350 volts	150 volts	150 volts				
Pulse width (ns):	0.4 - 200	1 - 1000	2 - 100	2 - 100	2 - 100	5 - 500				
Rise time (ns):	0.2	0.5	0.5	1.0	0.5	2.0				
Pulse PRF range:	DC - 0.5 GHz	DC - 100 MHz	DC - 10 MHz	DC-10 MHz	DC - 10 MHz	DC - 1 MHz				
CW frequency range:	10 MHz - 1.0 GHz	1 - 200 MHz	•	•	-	•				
Max. bias current:	100 mA	100 mA	100 mA	100 mA	100 mA	100 mA				
Max. bias voltage:	50 volts	50 volts	50 volts	50 volts	50 volts	50 volts				
Input impedance:	50 ohms	50 ohms	50 ohms	50 ohms	25 ohms	12 ohms				
N:			2	4	2	4				
Rs (ohms):	•		10	3	5	0.7				
IN connector:	SMA									
Monitor connector:	SMA									
Bias connector:	Solder pin									
Dimensions (H x W x D):		41 mm x 66 mm x 76 mm (1.6 " x 2.6 " x 3.0")								
Material:	Cast aluminum, blue enamel									
Mounting:		Any								

PULSE OR RF

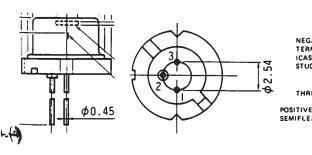
LASER DIODE PHOTO DIODE DETECTOR SOCKET ASSEMBLY

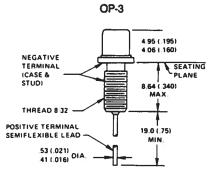

MD

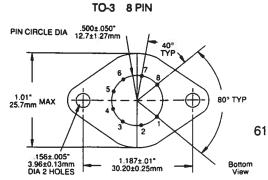

MI (50 OHMS)

1 OHM

AVX-S1 FUNCTIONAL EQUIVALENT CIRCUIT


AVX-S2 FUNCTIONAL EQUIVALENT CIRCUIT




AVX-S3 FUNCTIONAL EQUIVALENT CIRCUIT

AVX-S3 INPUT ASSEMBLY (FOR OP-3 PACKAGE)

TO-18

TYPICAL PACKAGES

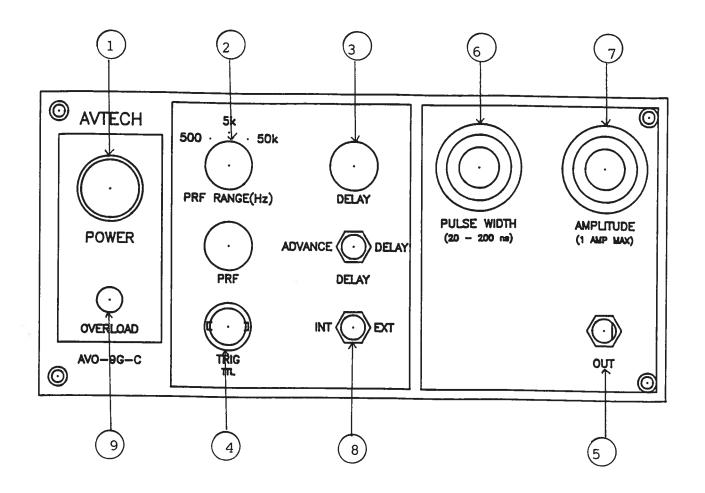
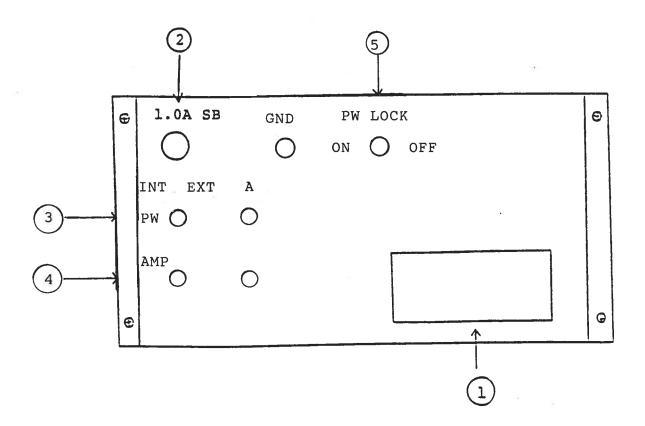
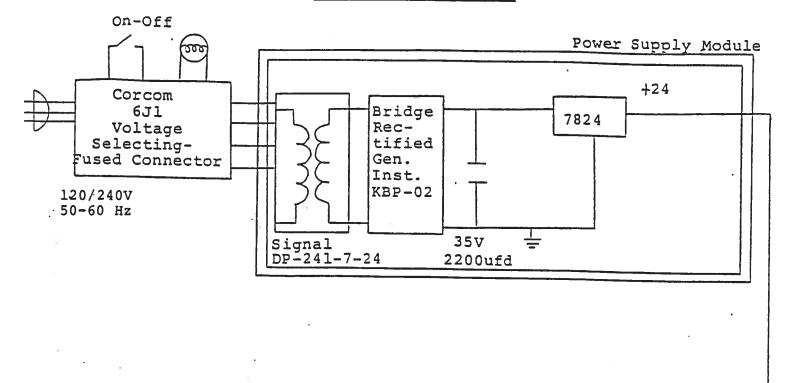


Fig. 3 FRONT PANEL CONTROLS


- (1) ON-OFF Switch. Applies basic prime power to all stages.
- (2) PRF Control. Varies PRF as follows:

Range		M:	IN	MAX	
	1	50	Hz	500	Hz
Range	2	500	Hz	5	kHz
Range	3	5	kHz	50	kHz

The operating PRF should be set using a scope.


- (3) <u>DELAY Control</u>. Controls the relative delay between the reference output pulse provided at the TRIG output (4) the main output (5). This delay is variable over the range of 0 to about 0.2 us. The TRIG output precedes the main output when the ADVANCE-DELAY switch is in the ADVANCE position and lags when the switch is in the DELAY position.
- (4) TRIG Output. This output is used to trigger the scope time base. The output is a TTL level 100 ns (approx.) pulse capable of driving a fifty Ohm load.
- (5) <u>OUT Connector</u>. SMA connector provides output to a fifty Ohm load.
- (6) <u>PW Control</u>. A one turn control which varies the output pulse width from 100 ns to 5 us.
- (7) AMP Control. A one turn control which varies the output pulse amplitude to a fifty Ohm load.
- (8) EXT-INT Control. With this toggle switch in the INT position, the PRF of the AVR unit is controlled via an internal clock which in turn is controlled by the PRF controls. With the toggle switch in the EXT position, the AVR unit requires a 0.2 us TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source.

- OVERLOAD. AVO units with a serial number higher than (9) 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument OFF and turn the indicator light ON. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn ON (i.e. light OFF) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light ON) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:
 - 1) Reducing PRF (i.e. switch to a lower range)
 - 2) Reducing pulse width (i.e. switch to a lower range)
 - 3) Removing output load short circuit (if any)

- (1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.25A SB).
- (2) <u>1.0A SB</u>. Fuse which protects the output stage if the output duty cycle rating is exceeded.
- (3) To voltage control the ouput pulse width, set the switch in the EXT position and apply 0 to +10V to connector A $(R_{IN} \ge 10K)$. (EW option).
- (4) To voltage control the output amplitude, set the switch in the EXT position and apply 0 to +10V to connector A $(R_{IN} \ge 10K)$. (EA option).
- (5) PW LOCK. Due to the digital nature of the EW option, some pulse width jitter may be observed at certain settings of the PW pot. This jitter may be removed by setting the rear panel PW LOCK switch in the ON position. When in the ON position, the pulse becomes frozen and will not change (as the PW pot is adjusted) until the switch is placed in the OFF position.

SYSTEM BLOCK DIAGRAM

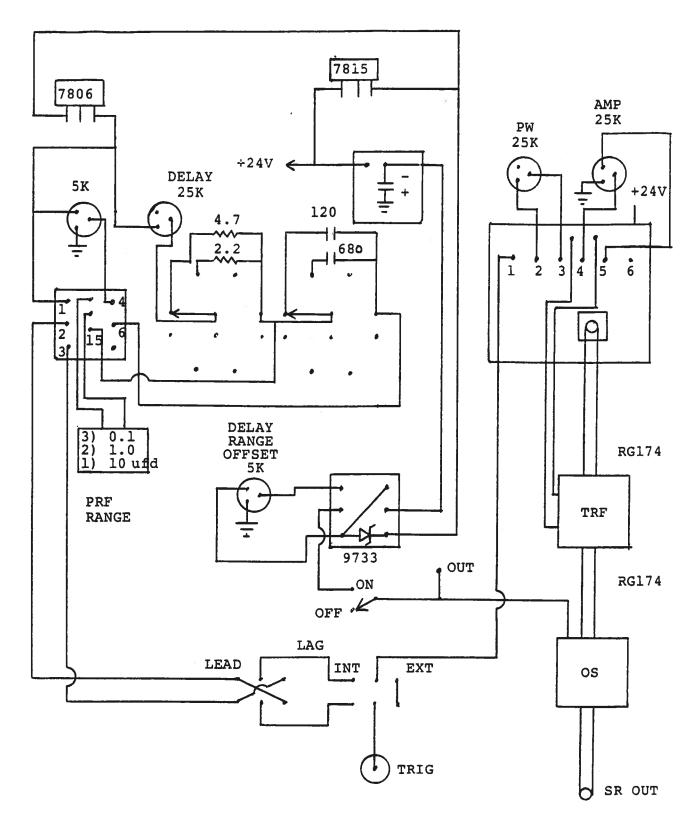


Fig. 5 AVR-E1-W-C-P-OT (GGB MOD)

SYSTEM DESCRIPTION AND REPAIR PROCEDURE

The AVO-9G-C consists of the following basic modules:

- 1) AVO-9G-PG pulse generator module
- 2) AVO-9G-CL clock module
- 3) +24V power supply board
- 4) Overload module

The modules are interconnected as shown in Fig. 4.

The clock module controls the output PRF and the relative delay between the main output and the TRIG output. The PG pulse generator modules generate the output pulse. In the event of an instrument malfunction, it is most likely that the rear panel 1.0A SB fuse may have failed due to an output short circuit condition or to a high duty cycle condition. If the fuse is not blown, then the four Phillips screws on the back panel should be removed. The top cover may then be slid off and operation of the clock and power supply modules should be checked. The clock module is functioning properly if:

- a) 0.1 us TTL level outputs are observed at Pins 2 and 3.
- b) The PRF of the outputs can be varied over the range of 50 Hz to 50 kHz using the PRF controls.
- c) The relative delay between the Pin 2 and 3 outputs can be varied by at least 5 us by the DELAY controls.

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed. The power supply board generates +24V DC to power the other modules. If the voltage is less than +24V, turn off the prime power and unsolder the lead from the 7824 regulator chip on the power supply board. Solder a 100 Ohm 5 Watt resistor to the 7824 output to ground and turn on the prime power. A voltage of +24 Volts should be read. If the voltage is less then the power supply board is defective and should be repaired or replaced.