AVTECH ELECTROSYSTEMS LTD.
NANOSECOND WAVEFORM ELECTRONICS SINCE 1975
-1 P.O. BOX 265
OGDENSBURG, NY
U.S.A. 13669-0265

TEL: (315) 472-5270
FAX: (613) 226-2802

TEL: 1-800-265-6681

FAX: 1-800-561-1970

e-mail: info@avtechpulse.com http://www.avtechpulse.com/

区 BOX 5120, LCD MERIVALE
OTTAWA, ONTARIO
CANADA K2C 3H4
TEL: (613) 226-5772
FAX: (613) 226-2802

INSTRUCTIONS

MODEL AVX-FD2-PS
0 to 100 MHz
FREQUENCY DIVIDER
WITH ADJUSTABLE
DIVISION FACTOR
\qquad

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

TECHNICAL SUPPORT

Phone: 613-226-5772 or 1-800-265-6681
Fax: 613-226-2802 or 1-800-561-1970
E-mail: info@avtechpulse.com
World Wide Web: http://www.avtechpulse.com

TABLE OF CONTENTS

WARRANTY 2
TECHNICAL SUPPORT. 2
TABLE OF CONTENTS 3
INTRODUCTION. 4
OPTIONAL FEATURES. 4
SPECIFICATIONS 5
INSTALLATION 6
VISUAL CHECK. 6
PLUGGING IN THE INSTRUMENT. 6
FRONT PANEL CONTROLS. 8
REAR PANEL CONTROLS. 10
GENERAL INFORMATION 11
BASIC TIMING CONTROL 11
RESET FUNCTION 11
DIVISOR VALUES 12
"-IP" OPTION. 12
TOP COVER REMOVAL 12
ELECTROMAGNETIC INTERFERENCE 12
PERFORMANCE CHECK SHEET. 13
Manual Reference: T:linstructwordlavx-fd\AVX-FD2-PS,edition4.sxw. Copyright © 2003 Avtech Electrosystems Ltd, All Rights Reserved.

INTRODUCTION

The Model AVX-FD2-PS digital frequency divider will divide the pulse repetition frequency of an input pulse train by an adjustable factor (N), which is variable from 2 to 255 (or to 65535, for models with the -XN option). The instrument will operate at input frequencies of up to 100 MHz . (This instruments will also divide by 1 , but the maximum input frequency is then limited to half of the normal rating.)

The standard AVX-FD2-PS is designed to work with TTL logic-level signals. The input impedance may be set at either 50Ω or $1 \mathrm{k} \Omega$ by means of a two-position switch. The output pulse width for Model AVX-FD2-PS is controlled by a 3-position range switch and a one-turn fine control, and is variable from 5 ns to 5 us.

A TTL "RESET" input and an OPERATE/RESET switch are also provided. A logic-high level on the TTL input resets the internal counters to a default state. This input is useful for synchronization purposes. The OPERATE/RESET switch performs a similar function when it is set to the RESET position.

OPTIONAL FEATURES

The following options are available for the AVX-FD2-PS:
-ECL option: Input and output operate at ECL levels (rather than at standard TTL levels).
-DECL option: Inputs and outputs are differential ECL.
-EP option: Provides complementary output pulses.
-IP option: \quad Accepts pulse or sine wave input from 0.2 to 5.0 Volts peak to peak.
-XN option: Extends the maximum divisor from 255 to 65535.

SPECIFICATIONS

Model:	AVX-FD2-PS			
Maximum input frequency:	$\mathrm{N}>1: 0-100 \mathrm{MHz}$ $\mathrm{N}=1: 0-50 \mathrm{MHz}$			
Division factor (N):	0 to 255 (standard), 			
Input level:	to 65535 (with -XN option)	$	$	TTL (0 and 3-5V)
:---	:---:			

VISUAL CHECK

After unpacking the instrument, examine to ensure that it has not been damaged in shipment. Visually inspect all connectors, knobs, and handles. Confirm that a power cord is with the instrument. If the instrument has been damaged, file a claim immediately with the company that transported the instrument.

PLUGGING IN THE INSTRUMENT

Examine the rear of the instrument. There will be a male power receptacle, a fuse holder and the edge of the power selector card visible. Confirm that the power selector card is in the correct orientation.

For AC line voltages of $110-120 \mathrm{~V}$, the power selector card should be installed so that the " 120 " marking is visible from the rear of the instrument, as shown below:

For AC line voltages of $220-240 \mathrm{~V}$, the power selector card should be installed so that the " 240 " marking is visible from the rear of the instrument, as shown below:

If it is not set for the proper voltage, remove the fuse and then grasp the card with a pair of pliers and remove it. Rotate horizontally through 180 degrees. Reinstall the card and the correct fuse.

In the 120 V setting, a 0.5 A slow blow fuse is required. In the 240 V setting, a 0.25 A slow blow fuse is required.

1. POWER Switch. This is the main power switch.
2. IN CONNECTOR. The input signal is applied to this BNC connector. Standard models expect TTL-level inputs (i.e. logic low $=0 \mathrm{~V}$, logic high $=3$ to 5 V).

Models with "-ECL" or "-DECL" options expect ECL levels (i.e. logic low $=-1.6 \mathrm{~V}$, logic high $=-0.8 \mathrm{~V}$).

Models with the "-IP" option will accept logic-level inputs, but will also trigger from a sine wave input from 0.1 to 5.0 Volts peak-to-peak, when the input impedance switch is set to 50Ω.
3. Rin (INPUT IMPEDANCE) SWITCH. This switch determines the input impedance of the IN connector (either 50Ω or $1 \mathrm{k} \Omega$). If the trigger source attached to the IN connector will drive a 50Ω load, the 50Ω setting should be used, as well as 50Ω coaxial cabling. This will minimize ringing and other waveform distortions on the input. The $1 \mathrm{k} \Omega$ setting is useful when triggering the instrument from an unbuffered TTL IC output.
4. DIVISION FACTOR THUMBWHEEL SWITCH. This switch determines the division factor, N. The input and output pulse repetition frequencies ($f_{\text {in }}$ and $f_{\text {out }}$) are related by: $f_{\text {out }}=f_{\text {in }} / N$.
5. OUT CONNECTOR. The output signal is provided on this connector. Standard models generate TTL-level outputs (i.e. logic low $=0 \mathrm{~V}$, logic high $=3$ to 5 V), which will drive loads as low as 50Ω.

Models with "-ECL" or "-DECL" options generate ECL levels (i.e. logic low $=-1.6 \mathrm{~V}$, logic high $=-0.8 \mathrm{~V}$).
6. PULSE WIDTH RANGE and FINE CONTROLS. This range switch and fine control are used to set the output pulse width.
7. RESET CONNECTOR. A TTL-level pulse on the RESET connector will reset the internal counters to a default state. This can be used for synchronisation purposes. The connector may be left unconnected without interfering with normal operation.

The OPERATE/RESET switch can be used to achieve this function manually. That is, setting this switch to the "RESET" position will reset the internal counters to a default state.

REAR PANEL CONTROLS

1.AC POWER INPUT. A three-pronged recessed male connector is provided on the back panel for AC power connection to the instrument. Also contained in this assembly is a slow-blow fuse and a removable card that can be removed and repositioned to switch between 120 V AC in and 240 V AC in.

For AC line voltages of 110-120V, the power selector card should be installed so that the " 120 " marking is visible from the rear of the instrument.

For AC line voltages of $220-240 \mathrm{~V}$, the power selector card should be installed so that the " 240 " marking is visible from the rear of the instrument.

If it is not set for the proper voltage, remove the fuse and then grasp the card with a pair of pliers and remove it. Rotate horizontally through 180 degrees. Reinstall the card and the correct fuse.

In the 120 V setting, a 0.5 A slow blow fuse is required. In the 240 V setting, a 0.25 A slow-blow fuse is required.

GENERAL INFORMATION

BASIC TIMING CONTROL

This instrument operates by counting the number of input pulses, and generating an output pulse for every N input pulses. N is set by the thumbwheel switches on the front panel.

This function is illustrated below, assuming that $N=4$.

Basic Operation

Note that if the input signal is non-periodic, the output signal will also be non-periodic:

Basic Operation for Non-Periodic Inputs

RESET FUNCTION

A reset input and switch are provided on the front panel, which can be used for synchronization, as shown below:

In this example, $\mathrm{N}=4$. When the reset input is TTL high, the internal counter are reset to zero and are held at zero until the reset input switches to TTL low. An output pulse is generated on the fourth input pulse after the reset line returns to TTL low.

DIVISOR VALUES

The frequency divisor may be set at any value between 2 and 255 , inclusive, for normal operation. The divisor may also be set to zero, in which case a constant logic-low output is generated.

The divisor may be set for $\mathrm{N}=1$. In this mode, the instrument essentially acts as a pulsestretcher or "one-shot", since the output pulse width is controlled from the front panel. In this mode, the maximum input frequency is limited to half of its normal value.

"-IP" OPTION

Models with the "-IP" option will accept logic-level inputs, but will also trigger from a pulse or sine wave input with amplitudes from 0.1 to 5.0 Volts peak to peak, when the input impedance switch is set to 50Ω. This feature is inoperative if the input impedance switch is set to $1 \mathrm{k} \Omega$.

TOP COVER REMOVAL

The interior of the instrument may be accessed by removing the four Phillips screws on the top panel. With the four screws removed, the top cover may be slid back (and off).

ELECTROMAGNETIC INTERFERENCE

To prevent electromagnetic interference with other equipment, all used outputs should be connected to shielded 50Ω loads using shielded 50Ω coaxial cables. Unused outputs should be terminated with shielded 50Ω BNC terminators or with shielded BNC dust caps, to prevent unintentional electromagnetic radiation. All cords and cables should be less than 3 m in length.

Ang. 26, 2003

