AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS ENGINEERING - MANUFACTURING
P.O. BOX 265 OGDENSBURG NEW YORK

13669 13151472-5270

BOX 5120 . STN. "F"
O OTTAWA. ONTARIO CANADA K2C 3 H 4 TEL: $16131226-5772$ FAX: (613) 226-2802
TELEX: 053-4591

INSTRUCTIONS

MODEL AVR-3-PW-C FULSE GENERATOR
S.N.:

WAFRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warfanty of guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators; cables, connectors, etc.) should exceed 100 MHz .
2) The sync output channel provides TTL level signals. To avoid overdriving the TRIG input channel of some scopes, a 30 db attenuator should be placed at the input to the scope trigger channel. The SYNC output precedes the main output when the front panel LEAD-LAG switch is in the LEAD position. The SYNC output lags the main output when the switch is in the LAG position.
3) The output pulse width is controlled by means of the front panel one turn FW control and by the FW RANGE control. The minimum and maximum PW for each range and the corresponding maximum FRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

FW min
0.1 usec

FFiF max 1 KHz
Range 2

Range 3
1.0 usec

PRF max 1 KHz
10 usec
FFiF max 500 Hz

F'W max
1.0 usec

PRF $\max 1 \mathrm{KHz}$
10 usec
PFF max 500 Hz
100 usec
FFF max 50 Hz

To voltage control the output pulse width within each range, set the rear panel switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Rin $\geqslant 10 k$). (option).
4) To obtain a stable output display the FRF control on the front panel should be set mid range. The front panel TRIG switch should be in the INT position. The DELAY controls and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired FRF by rotating the FRF and FRF FINE cantrols.
5) The output pulse amplitude is controlled by means of the front panel one turn AMP control. To voltage control the output amplitude, set the rear panel switch in the EXT position and apply 0 to +10 volts between terminal A and ground ($\mathrm{RIN}_{\mathrm{IN}} \geqslant 10 \mathrm{~K}$). (option).
6) An external clock may be used to control the output PRF of the AVF unit by setting the front panel TRIG toggle
switch in the EXT position and applying a 0.2 usec (apprax.) TTL level pulse ta the TFIG BNC connector input. For operation in this modeg the scope time base must also be triggered by the external clock rather than from the SYNC output.
8) The DELAY control controls the relative delay between the reference output pulse provided at the TRIG output and the main output. This delay is variable over the range of 0.1 usec to 100 usec. The TFig output precedes the main output when the LEAD-LAG switch is in the LEAD position and lags when the switch is in the LAG position.

MIN
Range 1
0.1 usec

Fiange 2
Range 3
1.0 45ec

10 usec
1.0 usec

MAX

10 usec

100 usec
9) The $A V F-3-F W$ features an output impedance of the order of several ohms (rather than 50 ohms). The following consequences of this feature should be moted:
a) When used to switch same semiconductor devices (eg. bipolar and VMOS power transistors), the AVR unit will yield much faster switching times than those provided by 50 ohm pulse generators.
b) The AVR unit will safely operate in to load impedances in the range of 50 ohms to an open circuit. However, the fall time may degrade for load impedances higher than fifty ohms.
c) The AVR unit may be effectively converted to a fifty ohm output impedance generator by placing a fifty ohm $1 / 2$ watt carbon composition resistor in series with the output of the unit and the load. The maximum available load voltage will then decrease to 100 valts (from 200 valts).

AVR-S-PW-C units with a serial number higher than 5600 are protected by an automatic overload protective circuit which contrals the front panel overload light. If the unit is overloaded by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument \quad IFF and turn the indicator light DN. The
light will stay ON (i.e. output OFF) for about 5 secands after which the instrument will attempt to turn ON ii.e. light \quad gF) for about 1 second. If the overlaad condition persists, the instrument will turn OFF again (i.e. light ON) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:

1) Fieducing FFFF (i.e. switch to a lower range)
2) Reducing pulse width (i.e. switch to a lower range)

उ) Fiemaving output laad short circuit (if any)

Fig. 2
FRONT PANEL CONTROLS

(6) FW Contral. A one turn control and 3 position range switch which varies the positive output pulse width from O. 1 usec to 100 usec. The minimum and maximum FW for each range and the corresponding maximum FRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

		PW min	PW max	
Range	1	0.1 usec	1.0 usec	
		PRF max 1 kHz	PRF max 1	KHz
Fiange 2		1.0 usec	10 usec	
		PRF max 1 kHz	PRF max 500	Hz
Range 3		10 usec	100 usec	
		PRF max 500 Hz	PRF max 50	Hz

AMF Control. A one turn control which varies the output pulse amplitude from 0 to 200 V .

INT-EXT-MAN Control. With this toggle switch in the INT position, the FRF of the AUF unit is controlled via an internal clock which in turn is controlled by the FRF contral. With the toggle switch in the EXT position, the AVF unit requires a 0.2 usec TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source.

SINGLE PULSE. For single pulse manual operation, set the front panel INT-EXT-MAN switch in the MAN position and push the SINGLE FULSE button.

QVERLDAD INDICATOR. AVR-S-PW-C units with a serial number higher than 5600 are protected by an automatic overload protective circuit which contrals the front panel overlaad light. If the unit is overlaaded (by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument \quad of and turn the indicator light $\square N$. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn $\square N$ (i.e. light $O F F$) for about 1 second. If the overload condition persists, the instrument will turn \quad FF again (i.e. light $O N$) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overlaad conditions may be removed by:

1) Fieducing FiRF (i.e. switch to a lower range)
2) Feducing pulse width (i.e. switch to a lower range)
3) Removing output lad short circuit (if any)

Fig. 3
BACK PANEL CONTROLS

(1) FUSED CONNECTOR: VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse.
(2) 1.0A SB. Fuse which protects the output stage if the output duty cycle rating is exceeded.
(3) EA. To voltage control the output amplitude, set the switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Rin > 10K). (option).
(4) EW. To voltage control the output pulse width, set the switch in the EXT position and apply 0 to +10 volts between terminal A and ground $\left\{R_{\text {IN }}>10 K\right.$. (option).
(5) DS. To apply a DC offset to the output pulse, apply the desired DC offset potential to the $0 S$ solder terminals $\left(V_{\text {max }} \leqslant \pm 50\right.$ volts, $\left.I_{\text {max }}< \pm 200 \mathrm{~mA}\right)$.

Fig. 4a

Fig. 4b

The AVR-3-FW-C consists of the following basic modules:

1) AVR- $3-F W-F G$ pulse generator module
2) AVR-3-CL clock module
3) +24V power supply board
4) AVR-3-PS power supply module
5) AVF-3-PW pulse width madule

The modules are interconnected as shown in Fig. 4. The clock module controls the output PRF and the relative delay between the main output and the SYNC outputs. The PG pulse generator modules generate the output pulse. The PS-P and PS-N modules generate 0 to ± 150 volts to power the pulse generator module. The PW module contrals the output pulse width. In the event of an instrument malfunction, it is most likely that the rear panel 1.OA SB fuse or some of the output switching elements (SL4) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the cover plate on the bottom side of the instrument. NOTE: First turn off the prime power. The elements may be removed from their sockets by means of a needle nosed pliers. The SL4 is a selected UMOS power transistor in a TO 220 packages and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SL4 switching elements, take care to insure that the short lead (of the three leads) is adjacent to the black dot on the chassis. If the switching elements are not defective, then the four Fhillips screws on the back panel should be removed. The top cover may then be slid off and operation of the clock and power supply modules should be checked. The clock module is functioning properly if:
a) 0.1 usec TTL level outputs are observed at pins 2 and 3. b) The PRF of the outputs can be varied over the range of 0.1 Hz to 1.0 KHz using the PRF controls.
c) The relative delay between the pin 2 and 3 outputs can be varied by at least 0.1 usec to 1.0 sec by the DELAY contrals.

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed. The power supply board generates $+24 V$ DC to power the other modules. If the voltage is less than +24 V , turn off the prime power and unsolder the lead from the 7824 regulator chip on the power supply board. Solder a 100 ohm 5 watt resistor to the 7824 output to ground and turn on the prime power. A voltage of +24 volts should be read. If the voltage is less then the power supply board is defective and should be repaired or replaced.
schroff 03.11 .91 Edition D
-EW
-EA

- os

