AVTECH ELECTROSYSTEMS LTD.
 NANOSECOND WAVEFORM ELECTRONICS ENGINEERING - MANUFACTURING

P.O. BOX 265 OGDENSBURG NEW YORK 13669
13151472.5270

BOX 5120. STN. "F"茴 OTTAWA. ONTARIO CANADA K2C 3 H 4 TEL: $16131226-5772$ FAX: (613) 226-2802 TELEX: 053-4591

INSTRUCTIONS

MODEL AVR-S-FW-C PULSE GENERATOR

WARFANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cabless connectors, etc.) should exceed 100 MHz .
2) The sync output channel provides TTL level signals. To avoid overdriving the TRIG input channel of some scopes, a 30 db attenuator should be placed at the input to the scope trigger channel. The SYNC output precedes the main output when the front panel LEAD-LAG switch is in the LEAD position. The SYNC output lags the main output when the switch is in the LAG position.
3) The output pulse width is controlled by means of the front panel one turn PW control and by the FW RANGE control. The minimum and maximum FW for each range and the corresponding maximum FFF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

	FW min	PW max
Range 1	0. 1 usec	1.0 usec
	FRF max 1 kKHz	PFF max 1 kHz
Range 2	1.0 usec	10 usec
	FFFF max 1 kHz	FRF max 500 Hz
Range 3	10 usec	100 Leec
	PFF max 500 Hz	FFF max 50 Hz

To voltage control the output pulse width within each range, set the rear panel switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Rin シ10k). (aption).
4) To obtain a stable output display the FRF control on the front panel should be set mid range. The front panel TRIG toggle switch should be in the INT position. The DELAY controls and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired FFF by rotating the FRF and FRF FINE controls.
5) The output pulse amplitude is controlled by means of the front panel one turn AMF control. To voltage contral the output amplitude, set the rear panel switch in the EXT position and apply 0 to +10 volts between terminal A and ground ($\mathrm{Rin}_{\mathrm{I}}$ y 10k). (option).
6) An external clock may be used to contral the output FRF of the AVR unit by setting the front panel TRIG toggle switch in the EXT position and applying a 0.2 usec (approx.) TTL level pulse to the TRIG BNC connector input. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the SYNC output.
7) The DELAY control contrals the relative delay between the reference output pulse provided at the TRIG output and the main output. This delay is variable over the range of 0.1 usec to 100 usec. The TFIG output precedes the main output when the LEAD-LAG switch is in the LEAD position and lags when the switch is in the LAG position.

> MIN

MAX

Range 1	0.1 usec	1.0 usec
Range 2	1.0 usec	10 usec
Range 3	10 usec	100 usec

8) The AVR-S-FW features an output impedance of the order of several ohms (rather than 50 ohms). The following consequences of this feature should be noted:
a) When used to switch some semiconductor devices seg. bipolar and UMDS power transistors), the AVR unit will yield much faster switching times than those provided by 50 ohm pulse generators.
b) The AVR unit will safely operate in to load impedances in the range of 50 ohms to an open circuit. However, the fall time may degrade for load impedances higher than fifty ohms.
c) The AVR unit may be effectively converted to a fifty olfm output impedance generator by placing a fifty ohm $1 / 2$ watt carbon composition resistor in series with the output of the unit and the load. The maximum available load voltage will then decrease to 100 volts (from 200 valts).
d) The output switching elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced in the field following the procedure outlined in the REFAIF Section.

Fig. 2
FRONT PANEL CONTROLS

(1) DN-OFF Switch. Applies basic prime power to all stages.
(2) PRF Control. Varies PRF from 0.1 Hz to 1 KHz as follows:

Range 1	0.1 Hz	50 Hz
Range 2	20	Hz
Range 3	100 Hz	1

(3) DELAY Control. Controls the relative delay between the reference output pulse provided at the TRIG output (4) the main output (5). This delay is variable over the range of 0.1 to about 100 usec. Delay LEADS or LAGS depending on the position of the LEAD-LAG switch.

$$
\text { MIN } \operatorname{MAX}
$$

Range 1	0.1 usec	1.0 usec
Range 2	1.0 usec	10 usec
Range 3	10 usec	100 usec

(4) TFIG Dutput. This output is used to trigger the scope time base. The output is a TTL level 100 nsec (approx.) pulse capable of driving a fifty ohm load. This output precedes the output at (5) if the two position LEAD-LAG switch is in the LEAD position. This output follows the output at (5) if the switch is in the LAG position. The delay range is variable from 0.1 usec to 100 usec. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.
(5) DUT Connector. BNC connector provides output to a 50 ohm load.
(6) FW Control. A one turn control and 3 position range switch which varies the positive output pulse width from 0.1 usec to 100 usec. The minimum and maximum PW for each range and the corresponding maximum FFF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

PW min
0.1 usec

PRF max 1 KHz
1.0 usec

PRF max 1 kHz
Range 3

10 usec
PRF max 500 Hz

PW max
1.0 usec PFFF max 1 KHz

10 usec PRF max 500 Hz

100 usec FFFF $\max 50 \mathrm{~Hz}$
(8) AMF Control. A one turn control which varies the output pulse amplitude from o to 200 V .

EXT-INT Control. With this toggle switch in the INT position, the FRF of the AVR unit is controlled via an internal clock which in turn is contralled by the FFF control. With the toggle switch in the EXT position, the AVR unit requires a 0.2 usec TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source.

Fig. 3
BACK PANEL CONTROLS

(1) FUSED CONNECTOR, VOLTAEE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse.
(2) 1.0A 5B. Fuse which protects the output stage if the output duty cycle rating is exceeded.
(3) EA. To voltage control the output amplitude, set the switch in the EXT position and applyo to +10 volts between terminal A and ground (RIn > 1OK). (option).
(4) EW. To voltage contral the output pulse width, set the switch in the EXT position and apply O to +io volts between terminal A and ground ($\mathrm{RIN}_{\mathrm{IN}}>10 \mathrm{~K}$). (option).
(5) DS. To apply a DC offset to the output pulse, apply the desired DC offset potential to the $D S$ solder terminals ($V_{\text {max }} \leqslant \pm 50$ volts, $I_{\text {max }} \leqslant \pm 200 \mathrm{~mA}$).

$\overline{\text { KIddnS }}$ dGMOd

The AVR-3-FW-C consists of the following basic modules:

1) AVR-S-FW-FG pulse generator module
2) AVF-3-CL clock module
3) +24V power supply board
4) AVR-3-FS power supply madule
5) AVR-3-PW pulse width madule

The modules are interconnected as shown in Fig. 4. The clock module controls the output FRF and the relative delay between the main output and the SYNC outputs. The PG pulse generator modules generate the output pulse. The PS-P and PS-N modules generate 0 to ± 150 volts to power the pulse generator module. The FW module contrals the output pulse width. In the event of an instrument malfunction, it is most likely that the rear panel 1.OA SE fuse or some of the output switching elements (SL4) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the cover plate on the bottom side of the instrument. NOTE: First turn off the prime power. The elements may be removed from their sockets by means of a needle nosed pliers. The SL4 is a selected UMOS power transistor in a TO 220 packages and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SL4 switching elements, take care to insure that the short lead (of the three leads) is adjacent to the black dot on the chassis. If the switching elements are not defective, then the four Fhillips screws on the back panel should be removed. The top cover may then be slid off and operation of the clock and power supply modules should be checked. The clock module is functioning properly if:
a) 0.1 usec TTL level outputs are observed at pins 2 and 3 . b) The PRF of the outputs can be varied over the range of 0.1 Hz to 1.0 KHz using the PRF controls.
c) The relative delay between the pin 2 and 3 outputs can be varied by at least 0.1 usec to 1.0 sec by the DELAY contrals.

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed. The power supply board generates +24 V DC to power the other modules. If the valtage is less than $+24 V$, turn off the prime power and unsolder the lead from the 7824 regulator chip on the power supply board. Solder a 100 ohm 5 watt resistor to the 7824 output to ground and turn on the prime power. A voltage of +24 volts should be read. If the voltage is less then the power supply board is defective and should be repaired or replaced.

Schroff 03.14 .90 Editior B

- EW
- EA

$$
-0 S
$$

