AVTECH ELECTROSYSTEMS LTD.
 NANOSECOND WAVEFORM ELECTRONICS ENGINEERING • MANUFACTURING

P.O. BOX 265 OGDENSBURG NEW YORK 13669 (315) 472.5270

BOX 5120 STN. "F"

- OTTAWA, ONTARIO

CANADA K 2 C 3 H 4
(613) 226.5772

TELEX 053.4591

INSTRLICTIONS

WARRANTY

Abstract

Avtech Electrosvstems Ltd. warrants products of its manufacture to be free from defects in material and workmanshio under conditions of normal use. If, within one vear after deliverv to the original owner, and after preaaid return by the original owner, this Avtech product is found to te defective, Avtech shall at its option repair or replace said defective item. This warrantv does not apply to units which have been dissembled, modified or subiected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

1) The bandwidth cadabilitv of comoonents and instruments used to displav the oulse oenerator output sional (attenuators. cables, connectors, etc.) should exceed 100 MHz .
2) The use of 60 db attenuator at the scooe vertical inout channel will insure a peak input signal to the scope of less than one volt (necessarv onlv if sampling scope used). If a high impedance real time scope is used. the pulse generator should be terminated using a shunt 50 ohm resistor.
3) The svnc output channel provides TTL level signals. To avoid overdriving the TRIG input channel of some scopes, a 30 db attenuator should be placed at the input to the scope trigger channel.
4) The desired output polarity is selected by means of the front panel Palarity switch. With the POLARITY switch in the P position, the negative output pulse generator is rendered inactive. Likewise, with the POLARITY switch in the N position, the positive pulse generator is rendered inactive.
5) The output pulse widths for the positive and negative outputs are controlled by means of the front panel one turn PW control and by the PW RANGE control. The minimum and maximum PW for each range and the correspanding maximum PRF are as follows. Note that the unit may fail if operated at duty cvoles exceeding the above.

	PW min	PW max
Range 1	0.1 usec	1.0 usec
Range 2	PRF max 1 kHz	PRF max 1 KHz
	PRF max 1.0 kHz	PRF max 500 Hz
Range 3	10 usec	
	PRF max 500 Hz	PRF max 50 Hz

To voltage control the output oulse width within each ranqe, remove the jumper wire between banana plugs A and B on the back panel and apply 0 to +10 V to connector B ($R_{\text {IN }} \geqslant 10 K$). (option).
6) To obtain a stable output displav the PRF control on the front panel should be set mid range. The front panel

TRIG toggle switch should be in the INT position. The DELAY controls and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired FRF by rotating the PRF and PFF FINE controls.
7) The output pulse amplitudes for the positive and negative outputs are controlled by means of the front panel one turn AMP P and AMF N controls. To voltage control the output amplitudes remove the jumper wire between banana plugs A and E on the back panel and apply 0 to $+10 V$ to connector B (Rxw $\geqslant 10 K$). (option).
B) An external clock may be used to control the output FFF of the AVR unit by setting the front panel TRIG toggle switch in the EXT position and applying a 0.2 usec (approx.) TTL level pulse to the TRIG BNC connector input. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the SYNC output.
9) The AUR-3-FW features an output impedance of the order of several ohms (rather than 50 ohms). The following consequences of this feature should be noted:
a) When used to switch some semiconductar devices leg. bipolar and VMOS power transistors), the AVR unit will yield much faster switching times than those provided by 50 ohm pulse generators.
b) The AUR unit will safely operate in to load impedances in the range of 50 ohms to an open circuit. However, the fall time may degrade for load impedances higher than fifty ohms.
c) The AVR unit may be effectively converted to a fifty ohm output impedance generator by placing a fifty ohm $1 / 2$ watt carbon composition resistor in series with the output of the unit and the load. The maximum available load voltage will then decrease to 100 valts (from 200 volts).
d) The output switching elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced in the field following the procedure outlined in the REPAIR Section.

To apply a DC offset to the output of the AVR pulse generator, connect the AVR-3-0S module to the AVR-3 output port. The desired DC offset potential is then applied to the 05 terminals of the AVF-S-0S module. CAUTION: The offset valtage must not exceed ± 50 volts and the offset current must not exceed 200 mA . (option).

Fig. 2
FRONT PANEL CONTROLS

(1) ON-OFF Switch. Aoolies basic orime oower to all stages.
(2) PRF Control. Varies PRF from 50 Hz to 1 KHz (HIGH) and 5 Hz to 50 Hz (LOW).
(3) DELAY Contral. Contrals the relative delav between the reference output pulse provided at the SYNC output (4) the main qutput (5) and (6). This delay is variable over the range of 0 to about 1.0 usec.
(4) SYNC Butput. This output precedes the main output (5) and (6) and is used to trigger the scope time base. The output is a TTL level 100 nsec (appros.) pulse capable of driving a fiftv ohm load.
(5) OUT N Connector. BNC connector provides outout to a fifty ohm laad.
(6) OUT P Connector. BNC connector orovides output to a fiftv ohm laad.
(7) PW Contral. A one turn control and 3 position range (日) switch which varies the positive output pulse width from O. 1 usec to 10 usec. The minimum and maximum PW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at dutv cycles exceeding the above.

(9) AMF P Control. A one turn control which varies the positive output pulse amplitude from 0 to +200 V to a fifty ohm laad.
(10) AMP N Contral. A one turn contral which varies the negative output pulse amplitude from 0 to $-200 V$ to a fifty ohm laad.

POLARITY Control. With the switch in the P position, the negative output pulse generator is rendered inactive. With the switch in the N position, the positive output pulse generator is rendered inactive.
(12) EXT-INT Control. With this toogle switch in the INT position, the PRF of the AVR unit is controlled via an internal clock which in turn is controlled by the PRF and PRF FINE controls. With the toggle switch in the EXT position, the AVR unit requires a 0.2 usec TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this made, the scope time base must be triggered by the external trigger source.
(13) TRIG Inout. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.

Fig. 3
BACK PANEL CONTROLS

(1) FUSED COMNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse.
(2) To voltage control the output pulse width, remove the jumper wire between banana plugs A and B and apply o to +10 V to connector $B\left(R_{i n} \geqslant 10 \mathrm{~K}\right)$. (option).
(3) To voltage control the output amplitude, remove the (4) jumper wire between banana plugs A and B and apply 0 to +10 V to connector $\mathrm{B}\left(\mathrm{R}_{\mathrm{IN}} \geqslant 10 \mathrm{~K}\right)$. (option).

Fig. 4a POWER SUPPLY

Fig. 4b

The AVR-3-PW-C-PN consists of the following basic modules:

1) AVR-3-PW-PG pulse generator modules (-P and -N)
2) AVR-3-CL clock module
3) +24V power supply board
4) AVR-3-PS-N power supply module
5) AVR-3-PS-P power supply module
6) AVR-3-PW pulse width module

The modules are interconnected as shown in Fig. 4. The clock module contrals the output PRF and the relative delay between the main output and the SYNC outputs. The PG pulse generator modules generate the output pulse. The PS-P and PS-N modules generate 0 to +210 volts to power the pulse generator module. The PW module controls the output pulse width. In the event of an instrument malfunction, it is most likely that some of the output switching elements (SL4) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the cover plate on the bottom side of the instrument. NOTE: First turn off the prime power. The elements may be removed from their sockets by means of a needle nosed pliers. The SL4 is a selected VMaS power transistor in a TO 220 packages and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SL4 switching elements, take care to insure that the short lead cof the three leads) is adjacent to the black dot on the chassis. If the switching elements are not defective, then the four Phillips screws on the back panel should be removed. The top cover may then be slid off and operation of the clock and power supply modules should be checked. The clock module is functioning properly if:
a) 0.1 usec TTL level outputs are observed at pins 2 and 3.
b) The PRF of the outputs can be varied over the range of 50 Hz to 1.0 KHz using the PRF controls.
c) The relative delay between the pin 2 and 3 outputs can be varied by at least 1.0 nsec by the DELAY controls.

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed. The power supply board generates +24 V DC to power the other modules. If the voltage is less than +24 V , turn off the prime power and unsolder the lead from the 7824 regulator chip on the power supply board. Solder a 100 ohm 5 watt resistor to the 7824 output to ground and turn on the prime power. A voltage of +24 volts should be read. If the voltage is less then the power supply board is defective and should be repaired or replaced.

saglubon Jiend ontwoflot gity to ateienoa Иq-ラ-wq-E-sVA git

- EA

bysod viqqua "yewoa Vast (e
- lubom viqque rewoa И-eq- - -gVA iA
 -fumem risbiw sefua W9-を-gVA (d

 fngve grt ni .Htblw gelua juatuc ent alovtnos glubom wa git

 ant To sbie mestod ent no gisia vevoz ent givomev

 ert 7ol bsel tuarle git tant gTueni of gisc gilet eetromgle

 :7i VIv9qova pnimoisanut

 ent 71 -begy ed bivorla ajlov fet to gmstion a . yeway

