AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS

 engineering - MANUFACTURINGP.O. BOX 265 OGDENSBURG NEW YORK

13669 (315) 472.5270

BOX 5120 STN. "F'" OTTAWA, ONTARIO
© CANADA K2C 3H4
(613) 226.5772 TELEX 053.4591

INSTRUCTIONS

MODEL AVR-3-FS-PN-WITA-DS PULSE GENERATOR

$$
\text { S.N.: } 4557
$$

WARFANTY

Avtech Electrosystems Ltd. warrants products of its
manufacture to be free from defects in material and
workmanship under conditions of normal use. If, within one
year after delivery to the original owner and after prepaid
return by the original ownery this Avtech product is found to
be defectives Avtech shall at its option repair or replace
said defective item. This warranty does not apply to units
Which have been dissembled, modified or subjected to
conditions exceeding the applicable specifications or
ratings. This warranty is the extent of the obligation or
liability assumed by Awtech withrespect to this product and
no other warranty or guarantee is either expressed or implied.

Fig. 1
PULSE GENERATOR TEST ARRANGEMENT

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 100 MHz . The unit must be terminated in a high impedance (y 100k).
2) The output pulse width is equal to the input trigger pulse width.
3) The output FRF is equal to the imput trigger pulse PRF.
4) The output pulse amplitudes for the positive and negative outputs are cantrolled by means of the front panel one turn AMF P and AMF A controls.
5) The output switching elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced in the field follawing the procedure outlined in the FEFAIF Section.
6) The GUTPUT "FULSE-DC" switch should be in the "PULSE" position to obtain a pulse train output. When set in the "DC" position the output is a fixed DC level (controlled by the AMP control).
7) The front panel DC "INT-EXT" switch should normally be in the INT position. With the switch in the INT position the output voltage during the 63 usec interval is clamped at 0 valts. With the switch in the EXT position, the output voltage during the bS usec interval is equal to the voltage applied to the rear panel as terminal.

Fig. 2 FRONT PANEL CONTROLS

(1) ON-OFF Switch. Applies basic prime power to all stages.
(2) INPUT. Apply TTL input at this point.

(3) DC-PULSE Switch. Two position switch. Set in pulse position to obtain pulsed output. Set in DC position to obtain DC out (0 to ± 150 volts).
(4) P OUT. Frovides positive out to high impedance load (.) 100K).
(5) N OUT. Frovides negative out to high impedance load ($\geqslant 100 \mathrm{~K}$).
(6) AMF Controls. Controls pulse (and DC) output amplitude.
(日) INT-EXT. With the switch in the INT pasition the output valtage during the 6.3 usec interval is clamped at 0 volts. With the switch in the EXT position, the output voltage during the 63 usec interval is equal to the voltage applied to the rear panel OS terminal.

Fig. 2 BACK PANEL CONTROLS

(1)

FUSED CONNECTOR, UOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse.

QS F. When the front panel INT-EXT switch is in the EXT position, the output voltage during the 63 usec interval is equal to the DC potential applied to 05 P (o to +25 V).

DS N. When the front panel INT-EXT switch is in the EXT position, the output voltage during the 63 usec interval is equal to the DC potential applied to 05 N so to -25 volts).

1) The AVR unit consists of four basic components or modules:
a) Metal Chassis
b) AC to DC power supply board
c) AVR-3-PG pulse generator modules (-F and $-N$)
d) AVR-S-FS power supply modules ($-F$ and $-N$)

The modules are interconnected as shown above.
2) If the unit malfunctions, disconnect from the bo Hz supply and the trigger source and remove the four Fhillips screws on the back panel of the unit. With the screws removed, the top cover may be slid off.
3) Fecannect to the 60 Hz source and check the voltage an the line connecting to the +24 V pin of the AVR-FG module. A voltage of +24 volts should be recorded. If the voltage is substantially less than +24 volts, disconnect the 60 Hz source and disconnect the line from the +24 volt pin. Connect a 50 ohm 8 watt resistance to the output of the AVF-FS module. Feconnect to the 60 Hz source and measure the voltage across this resistor. A voltage of +24 volts should be indicated. If the valtage is substantially less than 24 volts the AVR-FS module is defective and should be either repaired or replaced. If the measured voltage is equal to +24 volts then the $5 L$ SH switching elements in the AUF-FG module have probably failed. The SL9H switching elements are easily replaced by removing the caver plate on the instrument bottom side and extracting the SL9H switching elements from their sockets using a pair of needle nose pliers. Eefore attempting this first insure that the prime power is off and also briefly ground the metal tabs on the SL9H elements ta the chassis as the bypass capacitors may be charged to 225 volts. Feplacement SL9H units must be ordered directly from Avtech. When reinstalling the SL9H units in their sockets, insure that the shortest of the three terminals is adjacent to the black dat on the AVR-PG chassis.

Fig. 3a
POWER SUPPLY

Fig. 3b

Schroff 11.18 .88

