AVTECH ELECTROSYSTEMSLTD.

NANOSECOND WAVEFORM ELECTRONICS
 ENGINEERING . MANUFACTURING

P.O. BOX 265 OGDENSBURG NEW YORK 13669
(315) 472.5270

BOX 5120 STN. 'F' OTTAWA, ONTARIO
7 CANADA K2C 3H4 (613) 226.5772

TELEX 053.4591

INSTFUCTIDNS

MODEL AVR-S-FW-PS-PN PLILSE GENERATOF
S.N: $=$

WAFRANTY

Avtech Electrosvstems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

1) The bandwidth capability of components and instruments used to displav the pulse oenerator outout signal (attenuators, cables. connectors, etc.) should exceed 100 MHz .
2) The use of 60 db attenuator at the scope vertical inout channel will insure a peak inout sional to the scope of less than one volt \{necessary onlv if samoling scope used). If a high impedance real time scone is used, the pulse qenerator should be terminated using a shunt 50 ohm resistor.
3) The desired outout polarity is selected bv means of the front panel POLARITY switch. With the POLARITY switch in the P position, the negative outout pulse generator is rendered inactive. Likewise, with the POLARITY switch in the N position, the positive pulse aenerator is rendered inactive.
4) The output pulse widths for the positive and negative outputs are controlled bv means of the front panel one turn PW P and PW N controls and by the PW RANGE control. The minimum and maximum PW for each ranoe and the corresoonding maximum PRF are as follows. Note that the unit may fail if operated at duty cvcles exceedina the above.

	PW min	PW max
Ranae 1	O. 1 usec	1.0 usec
	PRF max 1 KHz	PRF max 1 kHz
Range 2	1.0 usec	10 usec
	FFF max 1 kHz	PRF max 500 Hz
Ranoe 3	10 usec	100 usec
	FRF max 500 Hz	PRF max 50 Hz

To voltage control the output pulse width within each range, remove the jumper wire between banana olugs A and E on the back panel and aoplv o to $+10 V$ to connector B ($\mathrm{R}_{\text {TN }} \geqslant 10 \mathrm{~K}$). (option).
5) The output pulse amolitudes for the positive and neaative outputs are controlled bv means of the front panel one turn AMP P and AMP N controls.
6) To voltage control the output amolitude, remove the jumper wire between banana plugs A and B on the back panel and applv 0 to +10 V to connector B (Rin $\geqslant 10 \mathrm{~K}$). (ootion).
7) The outout FRF is equal to the input trioger oulse PRF.

日) The AVR-3-PW features an outout impedance of the order of several ohms (rather than 50 ohms). The following consequences of this feature should be noted:
a) When used to switch some semiconductor devices (eg. bipolar and UMOS power transistors). the AVR unit will vield much faster switching times than those provided by 50 ohm pulse generators.
b) The AVR unit will safelv operate in to load impedances in the range of 50 ohms to an open circuit. However, the fall time may dearade for load impedances higher than fifty ohms.
c) The AVR unit may be effectivelv converted to a fifty ohm output impedance generator by olacing a fifty ohm 1/2 watt carbon composition resistor in series with the output of the unit and the load. The maximum available load voltage will then decrease to 100 volts (from 200 valts).
d) The output switching elements may fail if the unit is inadvertentlv operated into a short circuit. The switching elements are easilv replaced in the field following the procedure outlined in the REPAIR Section.

(2) OUT N Connector. BNC connector provides output to a fifty ohm load.
(3) OUT P Connector. BNC connector provides output to a fifty ohm load.
(4) PW Controls. A one turn control and 3 position range
(5) switch which varies the output pulse width from 0.1 usec (6) to 100 usec. The minimum and maximum PW for each range and the corresponding maximum PRF are as follows. Note that the unit mav fail if operated at dutv cycles exceeding the above.

PW min PW max

Range 1	0.1 usec	1.0 usec
	PRF max 1 KHz	PRF max 1 KHz
Range 2	1.0 usec	10 usec
	PRF max 1 KHz	PRF max 500 Hz
Range 3	10 usec	100 usec
	PRF max 500 Hz	PRF max 50 Hz

(7) AMP P Control. A ten turn control which varies the oositive output pulse amplitude from 0 to +200 y to a fifty ohm load.
(B) AMF N Control. A ten turn control which varies the negative output pulse amplitude from 0 to -200 V to a fifty ohm load.
(10) TRIG Input. The external trigger signal is apolied at this input when the EXT-INT toa口le switch is in the EXT position.

Fig. 3
BACK PANEL CONTROLS

(1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition. the removable cord is adiusted to select the desired input operating voltage. The unit also contains the main pawer fuse.
(2) To valtage control the output pulse widths, remove the iumper wires between banana plugs A and B and apoly 0 to +10 V to connector B (RTN $\geqslant 1.0 \mathrm{~K}$).
(3) To voltage control the output amplitude for the P and N outputs, remove the jumper wires between banana plugs A and B and apply 0 to $+10 V$ to connector B (Rin $\geqslant 10 K$).

Fig. 3a POWER SUPPLY

Fig. 3b

The AVR-S-PW-PN consists of the following basic modules:

1) $\mathrm{AVR}-\mathrm{S}-\mathrm{PW}-\mathrm{PG}$ pulse generator modules (-F and -N)
2) +24V power supply board
3) AVR-S-PS power supply modules (-F and -N)

In the event of an instrument malfunction, it is most likely that some of the output switching elements (SL4) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the cover plate on the bottom side of the instrument. NDTE: First turn off the prime power. The elements may be removed from their sockets by means of a needle nosed pliers. The SL4 is a selected UMOS power transistor in a TO 220 packages and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SL4 switching elements, take care to insure that the short lead of the three leads) is adjacent to the black dot on the chassis. The power supply board generates $+24 \mathrm{~V} D \mathrm{DC}$ to power the other modules. If the voltage is less than +24 V , turn off the prime power and unsolder the lead from the 7824 regulator chip on the power supply board. Solder a 100 ohm 5 watt resistor to the 7824 autput to ground and turn on the prime power. A voltage of +24 volts should be read. If the voltage is less then the power supply board is defective and should be repaired or replaced.

- EN
-EA

