AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS ENGINEERING - MANUFACTURING

BOX 5120 , STN. "F"
西 OTTAWA. ONTARIO
CANADA K2C 3H4 TEL: (613) 226-5772 FAX: $(613) 226-2802$
TELEX: 053-4591

INSTRUCTIONS

WARFANTY
Avtech Electrosystems Ltd. warrants products of its
manufacture to be free from defects in material and
workmanship under conditions of normal use. If, within one
year after delivery to the original owner, and after prepaid
return by the original owner, this Avtech product is found to
be defective, Avtech shall at its option repair or replace
said defective item. This warranty does not apply to units
which have been dissembled, modified or subjected to
conditions exceeding the applicable specifications or
ratings. This warranty is the extent of the obligation or
liability assumed by Avtech with respect to this product and
no other warranty or guarantee is either expressed or implied.

Fig. 1
PULSE GENERATOR TEST ARRANGEMENT

1) The bandwidth canability of components and instruments used to displav the pulse oenerator outout signal (attenuators. cables. connectors, etc.) should exceed 100 MHz .
2) The use of 60 db attenuator at the scooe vertical inout channel will insure a peak inout sional to the scope of less than one volt (necessary onlv if samoling scope used). If a high impedance real time scode is used, the pulse qenerator should be terminated using a shunt 50 ohm resistor.
3) The desired outout polarity is selected bv means of the front panel POLARITY switch. With the FOLARITY switch in the P position, the neqative outout pulse generator is rendered inactive. Likewise, with the FOLARITY switch in the N position, the positive pulse generator is rendered inactive.
4) The outout pulse widths for the positive and negative outputs are controlled bv means of the front panel one turn PW P and PW N controls and by the PW RANGE control. The minimum and maximum PW for each ranae and the corresoonding maximum PRF are as follows. Note that the unit mav fail if operated at duty cvoles exceedina the above.

	PW min	PW max
Rance 1	0.1 usec	1.0 usec
	PRF max 1 KHz	PRF max 1 KHz
Rance 2	1.0 usec	10 usec
	FRF max 1 KHz	PRF max 500 Hz
Ranae 3	10 usec	100 usec Hz
	PRF max 500 Hz	PRF max 50 Hz

To voltage control the outrut pulse width within each ranae, remove the jumoer wire between banana oluas A and B on the back oanel and aoolv o to $+10 V$ to connector B ($\mathrm{R}_{\mathrm{rn}} \geqslant 10 \mathrm{~K}$). (ootion).
5) The outout pulse amolitudes for the oositive and neative outouts are contralled bv means of the front oanel one turn AMP P and AMP N controls.
6) To voltaoe control the output amolitude. remove the jumper wire between banana pluas A and B on the back panel and aoolv O to +10 V to connector B ($\mathrm{R}_{\mathrm{in}} \geqslant 10 \mathrm{~K}$). (ootion).
8) The AVF-S-FW features an output impedance of the order of several ohms (rather than 50 ohms). The following consequences of this feature should be noted:
a) When used to switch some semiconductor devices (eg. bipolar and UMos power transistors), the AVR unit will yield much faster switching times than those provided by 50 ohm pulse generators.
b) The AVR unit will safely operate in to load impedances in the range of 50 ohms to an open circuit. However, the fall time may degrade for load impedances higher than fifty ohms.
c) The AVR unit may be effectively converted to a fifty ohm output impedance generator by placing a fifty ohm $1 / 2$ watt carbon composition resistor in series with the output of the unit and the load. The maximum available load valtage will then decrease to 100 volts (from 200 valts).
d) The output switching elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced in the field following the procedure outlined in the FEFAIF Section.

SNL 1 Dption. Allows unit to trigger from input trigger pulses in the range of ± 1 to ± 5 volts (50 nsec ta 1.5 usec) rather than the standard +2 to +5 valts.

FRONT PANEL CONTROLS

(1)
(2)

FW min
Fange 1

Fiange 2

Range 3

> O. 1 usec
> FRF max 1 kHz
1.0 usec

PRF max 1 kHz
10 usec
FRF max 500 Hz

FW max
1.0 usec PRF max 1 kHz

10 usec PRF max 500 Hz

100 usec FFF max 50 Hz
(5) AMP P Control. A ten turn control which varies the positive output pulse amplitude from o to +2000 to a fifty ohm laad.
(6) AMP N Control. A ten turn control which varies the negative output pulse amplitude from 0 to -2000 to a fifty ohm laad.
(7) FQLAFITY Control. With the switch in the P position, the negative output pulse generator is rendered inactive. With the switch in the N positiong the positive output pulse generator is rendered inactive.
(8) IN. The external trigger signal is applied at this input (± 1 to ± 5 valts, FW 50 nsec to 1.5 usec).

Fig. 3
BACK PANEL CONTROLS

(1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse.
(2) To voltage contral the output pulse widths, remove the jumper wires between banana plugs A and B and apply O to +10 V to connector B ($\mathrm{RIN}_{\mathrm{IN}} \geqslant 1 . \mathrm{OK}$). (option).
(3) To voltage control the output amplitude for the F and N outputs, remove the jumper wires between banana plugs A and B and apply O to $+10 V$ to connector B ($\mathrm{Rin}_{\mathrm{IN}} \geqslant 10 \mathrm{~K}$). (option).

Fig. 3a POWER SUPPLY

Fig. 3b

AVR-3-PW-PS-PN-EA-EW

Fig. 4b SYSTEM BLOCK DIAGRAM (FOR NON EA, EW OPTION UNITS)

The AVR-3-PW-PN consists of the following basic modules:

1) AVR-3-PW-FG pulse generator modules (-F and -N)
2) $+24 V$ power supply board
3) AVR-3-F'S power supply modules (-F and $-N$)
4) AVR-3-SNL1 trigger module

In the event of an instrument malfunction, it is most likely that the rear panel 1.OA SB fuse or some of the output switching elements (SL4) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the cover plate on the bottom side of the instrument. NOTE: First turn off the prime power. The elements may be removed from their sackets by means of a needle nosed pliers. The SL4 is a selected UMOS power transistor in a $T 0220$ packages and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SL4 switching elements, take care to insure that the short lead (of the three leads) is adjacent to the black dot on the chassis. The power supply board generates +24 V DC to power the other modules. If the valtage is less than +24 V , turn off the prime power and unsolder the lead from the 7824 regulator chip on the power supply board. Solder a 100 ohm 5 watt resistor to the 7824 output to ground and turn on the prime power. A voltage of +24 volts should be read. If the voltage is less then the power supply board is defective and should be repaired or replaced.

Schroff 03.06.90 edition A
-EW

- EA

