AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS

 ENGINEERING . MANUFACTURINGP.O. BOX 265

OGDENSBURG NEW YORK 13669 (315) 472.5270

INSTRUCTIDNS

MODEL AVR-3-PW-C-PN-NASA1 PULSE GENERATOR

5.N.:

WARRANTY

Avtech Electrosvstems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

$50-60 \mathrm{~Hz}$

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 100 MHz .
2) The use of 60 db attenuator at the scope vertical input channel will insure a peak input signal to the scope of less than one volt fnecessary only if sampling scope used). If a high impedance real time scope is used, the pulse generator should be terminated using a shunt 50 ohm resistor (see Note No. 10).
3) The sync output channel provides TTL level signals. To avoid overdriving the TRIG input channel of some scopes, a 30 db attenuator should be placed at the input to the scope trigger channel.
4) The desired output polarity is selected by means of the front panel PaLARITY switch. With the POLARITY switch in the P position, the negative output pulse generator is rendered inactive. Likewise, with the POLARITY switch in the N position, the positive pulse generator is rendered inactive.
5) The output pulse widths for the positive and negative outputs are controlled by means of the front panel one turn PW control and by the PW RANGE control. The minimum and maximum PW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

	FW min	PW max
Range 1	0.1 usec	1.0 usec
FRF max 1 KHz	FRF max 1 KHz	
Range 2	1.0 usec	10 usec
	PRF max 1 kHz	PRF max 500 Hz
Range 3	10 usec	100 usec
	PRF max 500 Hz	PRF max 50 Hz

To voltage control the output pulse width within each range, remove the jumper wire between banana plugs A and B on the back panel and apply 0 to +10 V to connector B (Rin 》 1OK). (option).
6) To obtain a stable output display the PRF control on the front panel should be set mid range. The front panel

TRIG toggle switch should be in the INT position. The DELAY controls and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired PRF by rotating the PRF and PRF FINE controls.
7) The output pulse amplitudes for the positive and negative outputs are controlled by means of the front panel one turn AMP P and AMP N controls. To voltage contral the output amplitude, remove the jumper wire between banana plugs A and B on the back panel and apply 0 to +10 V to connector B (Rin 》 1OK). (ontion). (See Note No. 10).
8) An external clock may be used to control the output PRF of the AVR unit by setting the front panel TRIG toggle switch in the EXT position and applying a 0.2 usec (approx.) TTL level pulse to the TRIG BNC connector input. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the sYNC output.
9) The AVR-S-FW features an output impedance of the order of several ohms (rather than 50 ohms). The following consequences of this feature should be noted:
a) When used to switch some semiconductar devices (eg. bipolar and VMDS power transistors), the AVR unit will vield much faster switching times than those provided by 50 ohm pulse generators.
b) The AVR unit will safely operate in to load impedances in the range of 50 ohms to an open circuit. However, the fall time may degrade for load impedances higher than fifty ohms. (See Note Na. 10).
c) The AVR unit mav be effectively converted to a fifty ohm output impedance generator by placing a fifty ohm 1/2 watt rarbon composition resistor in series with the output of the unit and the load. The maximum available load voltage will then decrease to 100 volts (from 200 volts).
d) The output switching elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced in the field following the procedure outlined in the REPAIf Section.
10) NASA1 option. This option insures that the unit will operate into the two following load conditions:
a) 0 to ± 200 volts to a fifty ohm load, with the dutv cvele limitation described in Note 5.
b) 0 to ± 100 volts to a 10 ohm load, with the dutv cycle limitation described in Note 5.

CAUTION: The output switching elements may fail if more than ± 100 volts is applied to the 10 ohm load or if more than a peak current of 10 amperes is supplied to the load.

Fig. 2
FRONT PANEL CONTROLS

(1) ON-OFF Switch. Applies basic prime power to all stages.
(2) PRF Control. Varies PRF from 50 Hz to 1 KHz (HIGH) and 5 Hz to 50 Hz (LOW).
(3) DELAY Control. Controls the relative delay between the reference output pulse provided at the SYNC output (4) the main output (5) and (6). This delay is variable over the range of 0 to about 1.0 usec.
(4) SYNC Dutput. This output precedes the main output (5) and (6) and is used to trigger the scope time base. The output is a TTL level 100 nsec (approx.) pulse capable of driving a fifty ohm load.
(5) OUT N Connector. BNC connector provides output to a fifty ohm load.
(6) QUT P Connector. ENC connector provides output to a fifty ohm load.
(7) PW Control. A one turn contral and 3 position range
(9) AMF P Control. A one turn control which varies the positive output pulse amplitude from 0 to +200 V to a fifty ohm load, or 0 to +100 valts to a 10 ohm load.

AMP N Contral. A one turn contral which varies the negative output pulse amplitude from 0 to $-200 \quad v$ to a fifty ohm laad, or 0 to -100 volts to a 10 ohm load.

POLARITY Control. With the switch in the P position, the negative output pulse generator is rendered inactive. With the switch in the N position, the positive output pulse generator is rendered inactive.
(12) EXT-INT Control. With this toggle switch in the INT position, the PRF of the AVR unit is controlled via an internal clock which in turn is controlled by the PRF and PRF FINE controls. With the toggle switch in the EXT position, the AVR unit requires a 0.2 usec TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source.
(13) TRIG Input. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.

Fig. 3
BACK PANEL CONTROLS

(1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse.
(2) To voltage contral the output pulse width, remove the jumper wire between banana plugs A and B and apply o to +10 V to connector $B\left(R_{I N} \geqslant 10 K\right)$. (option).
(3) To voltage control the output amplitude, remove the (4) jumper wire between banana plugs A and B and apply O to +10V to connector B (Rin $\geqslant 10 k$). (option).

The AVR-3-PW-C-PN consists of the fallowing basic modules:

1) AVR-3-PW-PG pulse qenerator modules (-P and $-N$)
2) AVR-J-CL clock module
3) +24V power supply board
4) AVR-3-PS-N power supply module
5) AVR-S-PS-P power supply module
6) AVR-3-PW pulse width module

The modules are interconnected as shown in Fig. 4. The clock module contrals the output PRF and the relative delav between the main output and the SVNC outputs. The PG pulse generator modules generate the output pulse. The PS-P and PS-N modules generate 0 to +210 volts to power the pulse generator module. The PW module controls the output pulse width. In the event of an instrument malfunction, it is most likely that some of the output switching elements (SL4) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements mav be accessed by removing the cover plate on the bottom side of the instrument. NOTE: First turn off the prime power. The elements may be removed from their sockets by means of a needle nosed pliers. The SL4 is a selected VMOS power transistor in a TO 220 packages and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SL4 switching elements, take care to insure that the short lead (of the three leads) is adjacent to the black dot on the chassis. If the switching elements are not defective, then the four Phillips screws on the back panel should be removed. The top cover may then be slid off and operation of the clock and power supply modules should be checked. The clock module is functioning properly if:
a) 0.1 usec TTL level outputs are observed at pins 2 and 3 .
b) The PRF of the outputs can be varied over the range of 50 Hz to 1.0 KHz using the PRF controls.
c) The relative delay between the pin 2 and 3 outputs can be varied by at least 1.0 nsec by the DELAY controls.

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed. The power supply board generates +24 V DC to power the other modules. If the voltage is less than +24 V , turn off the prime power and unsolder the lead from the 7824 regulator chip on the power supply board. Solder a 100 ohm 5 watt resistor to the 7924 output to ground and turn on the prime power. A voltage of +24 volts should be read. If the voltage is less then the power supply board is defective and should be repaired or replaced.

Fig. 4a POWER SUPPLY

Fig. 4b

07.09 .86
$-E W$
$-E A$

