## AVTECH ELECTROSYSTEMSLTD.

NANOSECOND WAVEFORM ELECTRONICS ENGINEERING - MANUFACTURING
P.O. BOX 265 OGDENSBURG NEW YORK 13669 (315) 472.5270

BOX 5120 STN. "F"' $\times$ OTTAWA. ONTARIO
佥 CANADA K2C 3 H 4 (613) 226.5772 TELEX 053.4591

## WARRANTY

Avtech Electrosvstems Ltd. warrants products of its
manufacture to be free from defects in material and
workmanship under conditions of normal use. If, within one
year after delivery to the original owner, and after prepaid
return bv the original owner, this Avtech product is found to
be defective, Avtech shall at its option repair or replace
said defective item. This warrantv does not apply to units
which have been dissembled, modified or subjected to
conditions exceeding the applicable specifications or
ratings. This warranty is the extent of the obligation or
liability assumed by Avtech with respect to this product and
no other warranty or guarantee is either expressed or implied.

Fig. 1
PULSE GENERATOR TEST ARRANGEMENT


## Notes:

1) The bandwidth capabilitv of components and instruments used to display the pulse oenerator output signal \{attenuators, cables, connectors, etc.) should exceed 100 MHz .
2) The svnc output channel provides TTL level signals. To avoid overdriving the TRIG input channel of some scopes. a 30 db attenuator should be placed at the input to the scope trigger channel.
3) The desired output polarity is selected by means of the front panel POLARITY switch. With the POLARITY switch in the $P$ position, the negative output pulse generator is rendered inactive. Likewise, with the POLARITY switch in the $N$ position, the positive pulse qenerator is rendered inactive.
4) The output pulse widths for the positive and negative outputs are controlled by means of the front panel one turn FW $P$ and FW $N$ controls and by the PW RANGE control. The minimum and maximum $P W$ for each range and the corresponding maximum FRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

5) To obtain a stable output display the PRF control on the front panel should be set mid-range and the rear panel FFF range switch in the LOW position. The front panel TRIG toggle switch should be in the INT position. The DELAY contrals and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired FRF by rotating the FRF contral and the rear panel fRF range switch.
6) The output pulse amplitudes for the positive and negative outputs are controlled by means of the front Danel one turn AMP $P$ and AMF $N$ controls.
7) An external clock may be used to control the output PRF of the AVR unit by setting the front panel TRIG toogle switch in the EXT position and applying a 0.2 usec (approx.) TTL level pulse to the TRIG BNC comnector input. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the SYNC output.
8) The output switching elements may fail if the unit is operated into a load impedance of less than lok or if the duty cycle limitations are exceeded. The switching elements are easily replaced in the field following the procedure qutlined in the FEFAIR SECTION.

Fig. 2 FRONT PANEL CONTROLS

(1) ON-OFF Switch. Apolies basic prime power to all stages.
(2) PRF Control. Varies FRF from 5 Hz to 1 KHz (used with rear panel FRF RANGE switch).
(3) DELAY Control. Controls the relative delay between the reference output pulse provided at the SYNC output (4) the main output (5) and (6). This delay is variable over the range of 0 to about 1.0 usec.
(4) SYMC Output. This output precedes the main output (5) and (6) and is used to trigger the scope time base. The output is a TTL level 100 nsec (approx.) pulse capable of driving a fifty ohm load.
(5) OUT $N$ Connector. BNC connector provides output to a 10 K . (or higher) load.
(6) DUT F Connector. BNC connector provides output to a $10 k$ (or higher) load.
(7) PW P Control. A one turn control and 4 position range
(8) switch which varies the positive output pulse width from 0.1 usec to 1.0 msec. The minimum and maximum FW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

|  |  | PW min | FW mas |
| :---: | :---: | :---: | :---: |
| Range | 1 | O. 1 usec | 1.0 usec |
|  |  | FRF max 1 kHz | PFF max 1 kHz |
| Range | 2 | 1.0 usec | 10 usec |
|  |  | FFFF max 1 kHz | PRF max 500 Hz |
| Range | 3 | 10 usec | 100 usec |
|  |  | PRF max 500 Hz | PRF max 50 Hz |
| Ranqe | 4 | 100 usec | 1.0 msec |
|  |  | PRF max 50 Hz | FFFF max 50 Hz |

(9) FW N Control. A one turn control and 4 position range switch which varies the negative output pulse width from 0.1 usec to 1.0 msec. The minimum and maximum FW for each range and the corresponding maximum FRF are as for the $F$ channel.

AMF $P$ Control. A one turn control which varies the positive output pulse amplitude from 0 to $+300 \quad v$ to a 10K (or higher) laad.
(11) AMF $N$ Control: A one turn control which varies the negative output pulse amplitude from o to - 300 V to a 10k (or higher) load.
(12) POLARITY Control. With the switch in the P position, the negative output pulse generator is rendered inactive. With the switch in the $N$ position, the positive output pulse generator is rendered inactive.
(13) EXT-INT Control. With this toggle switch in the INT position, the FRF of the AVR unit is controlled via an internal clock which in turn is controlled by the PRF and FFF FINE controls. With the toggle switch in the EXT position, the AVf unit requires a 0.2 usec TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source.
(14) TRIG Input. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.

Fig. 3 BACK PANEL CONTROLS

(i) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main oower fuse.
(2) FRF Range. In the HIGH position the PRF can be varied from about 20 KHz to 1 KHz using the front panel one turn FRF control. In the LOW position the FRF can be varied from about 5 Hz to 50 Hz .

The AUR-3-PW-C-FN consists of the following basic modules:

1) AVR-S-PW-PG oulse generator modules ( $-P$ and $-N$ )
2) AVR-3-CL clock module
3) $+24 V$ power supply board
4) AVR-3-FS-N power supply module
5) AVR-3-FS-P power supply module
6) AVR-3-PW pulse width module

The modules are interconnected as shown in Fig. 4. The clock module controls the output PRF and the relative delay between the main output and the SYNC outputs. The FG pulse generator modules generate the output pulse. The PS-F and $\mathrm{FS}-\mathrm{N}$ modules generate 0 to +310 volts to power the pulse generator module. The PW module controls the output pulse width. In the event of an instrument malfunction, it is most likely that some of the output switching elements (SL4H) may have failed due to an output short circuit condition or to a tigh duty cycle condition. The switching elements may be accessed by removing the cover plate on the bottom side of the instrument. NOTE: First turn off the prime power. The elements may be removed from their sockets by means of a needle nosed oliers. The SL4H is a selected VMOS power transistor in a 70220 packages and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SL4H switching elements, take care to insure that the short lead sof the three leads) is adjacent to the black dot on the chassis. If the switching elements are not defective, then the four Fhillips screws on the back panel should be removed. The top cover may then be slid off and operation of the clock and power supply modules should be checked. The clock module is functioning properly if:
a) 0.1 usec TTL level outputs are observed at pins 2 and 3 .
b) The PRF of the outputs can be varied over the range of 50 Hz to 1.0 KHz using the PRF controls.
c) The relative delay between the pin 2 and 3 outputs can be varied by at least 1.0 nsec by the DELAY controls.

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed. The power supply board generates +24 V DC to power the other modules. If the voltage is less than +24 V , turn off the prime oower and unsolder the lead from the 7824 regulator chip on the power supply board. Solder a 100 ohm 5 watt resistor to the 7824 output to around and turn on the prime power. A voltaqe of +24 volts should be read. If the voltage is less then the power supply board is defective and should be repaired or replaced.

Fig. 4a
POWER SUPPLY


Fig. 4b


Schroff 12.20 .85

