AVTECH ELECTROSYSTEMSLTD.

NANOSECOND WAVEFORM ELECTRONICS ENGINEERING • MANUFACTURING
P.O. BOX 265 OGDENSBURG NEW YORK

13669
(315) 472.5270

EOX 5120 STN. "F'
Y OTTAWA. ONTARIO
Y CANADA K2C 3H4 (613) 226.5772 TELEX 053.4591

INSTRUCTIONS

WARRANTY

Avtech Electrasvstems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If. within one vear after deliverv to the original owner, and after prepaid return bv the oriainal owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subiected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or quarantee is either expressed or implied.

Fig. 1
PULSE GENERATOR TEST ARRANGEMENT

1) The equipment should be connected in the general fashion shown above. Since the AVR unit provides an output pulse rise time as 1 ow as 10 nsec a fast oscilloscope (at least 50 MHz and preferably 200 MHz) should be used to displav the waveform. Also, if a load of other than 50 ohm is emplaved, the lenath of coaxial cable between the AVR unit and the load should not exceed about 5 feet or the output waveform mav be degraded by the resulting reflections.
2) The svnc output channel provides TTL level signals. To avoid overdriving the TRIG imput channel of some scopes. a 30 db attenuator should be placed at the input to the scope trigger channel.
3) The output pulse width is controlled by means of the front panel one turn FW and by the PW FANGE control. The minimum and maximum PW for each range and the correspondina maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above (50 ohm load assumed):

PW min FW max

This model was specificallv desiqned to meet the following conditions:
A) 5 Amps, 100 volts, 1 usec. 10 KHz (1% dutv cvele)
B) 200 mA .100 volts. 30 usec. 800 Hz (2.5\% duty cycle)
4) To obtain a stable output displav the PRF control on the front panel should be set mid range. The front panel TRIG toggle switch should be in the INT position. The DELAY controls and the scope trigoering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired PRF by rotating the PRF and PRF FINE controls.
5) The output bulse amolitude is controlled by means of the frant panel one turn AMP contral.
6) To voltage control the output amplitude, remove the jumper wire between banana pluos A and E on the back panel and apply o to +10V to connector B ($\mathrm{RaN}_{\mathrm{N}} \geqslant 10 \mathrm{~K}$). (option).
7) An external clock may be used to control the output PRF of the AVR unit bV setting the front panel TRIG togole switch in the EXT position and applying a 0.2 usec (approx.) TTL level pulse to the TRIG BNC connector input. For operation in this mode, the scope time base must also be trigoered by the external clock rather than from the SYNC outrut.
8) The AVR-3-PW features an output impedance of the order of several ohms (rather than 50 ohms). The following consequences of this feature should be noted:
a) When used to switch some semiconductor devices (eg. bipolar and VMOS power transistors), the AVR unit will yield much faster switching times than those provided by 50 ohm pulse generators.
b) The AVR unit will safely operate in to load impedances in the range of 20 ohms to 500 ohms. However, the fall time may degrade for the higher load impedances.
c) The AVR unit may be effectively converted to a fifty ohm output impedance generator by placing a fifty ohm $1 / 2$ watt carbon composition resistor in series with the output of the unit and the load. The maximum available load voltage will then decrease to 50 volts (from 100 volts).
d) The output switching elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced in the field following the procedure outlined in the REPAIR Section.

Fig. 2 FRONT PANEL CONTROLS

(1) ON-DFF Switch. Applies basic prime power to all stages.
(2) PRF Contral. Varies PRF from 50 Hz to $20 \mathrm{KHz}(\mathrm{HIGH})$ and 5 Hz to 2 KHz (LOW).
(3) DELAY Contral. Controls the relative delav between the reference output pulse provided at the SYNC output (4) the main outout (5). This delav is variable over the ranae of 0 to about 1.0 usec.
(4) SYNC Dutput. This output precedes the main output (5) and (6) and is used to trigger the scope time base. The outout is a TTL level 100 nsec (approx.) pulse capable of driving a fifty ohm load.
(5) OUT Connector. ENC connector provides output to a fiftv ohm load.
(6) PW Control. A one turn control and 3 oosition range switch which varies the positive output pulse width from 0.1 usec to 10 usec. The minimum and maximum PW for each range and the corresoonding maximum PRF are as follows. Note that the unit may fail if operated at duty cveles exceeding the above (50 ohm load assumed).

PW min PW max

Range 1	0.1 usec	1.6 usec
	PRF max 20 KHz	PRF max 20
Range 2	1.4 usec	15 user
	PRF max 20 KHz	PRF max 2
Range 3	12 usec	60 usec
	PRF max 2 kHz	PRF max 400

This model was specifically designed to meet the followina conditions:
A) 5 Amps, 100 volts, 1 usec, 10 kHz (1% duty cycle)
B) $200 \mathrm{~mA}, 100$ volts. 30 usec, $800 \mathrm{~Hz}(2.5 \%$ dutv cvale)
(7) AMP P Control. A one turn control which varies the positive output pulse amplitude from 0 to 100 V to a 20 to 500 ohm load.
(8) EXT-INT Control. With this toggle switch in the INT position, the PRF of the AUR unit is controlled via an internal clock which in turn is controlled by the PRF and PRF FINE controls. With the toq口le switch in the EXT position, the AVR unit requires a 0.2 usec TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope
time base must be triquered by the external trigoer source.
(7) TRIG Input. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.

Fig. 3
BACK PANEL CONTROLS

(1)
(1) FUSED CONNECTOR. VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adiusted to select the desired inout operating voltage. The unit also contains the main power fuse.
(2) To voltage control the output pulse width, remove the iumber wire between banana plugs A and B and applv O to +10 V to connector B ($\mathrm{Rin}_{\mathrm{in}} \geqslant 10 \mathrm{~K}$). (option).
(3) To voltage contral the output amplitude, remove the jumper wire between banana plugs A and B and apply o to +10V to connector B (Rin $\geqslant 10 \mathrm{~K}$). (ootion).

SYSTEM DESCKIPTION AND REPAIR PROCEDURE

The AVR-3-PW-C consists of the following basic modules:

1) AVR-3-PW-PG pulse generator module
2) AVR-S-CL clock module
3) +24V power supply board
4) AVR-3-PS power supolv module
5) AVR-3-PW pulse width module

The modules are interconnected as shown in Fig. 4
The clock module controls the output PFF and the relative delay between the main output and the SYNC outouts. The PG pulse generator module generates the output pulse. The PS module generates 0 to 10 valts to power the pulse generator module. The PW module controls the output pulse width. In the event of an instrument malfunctiong it is most likely that some of the output switchina elements (SL4) may have failed due to an output short circuit condition or to a high dutv cycle condition. The switching elements mav be accessed by removina the cover plate on the bottom side of the instrument. NDTE: First turn off the orime power. The elements may be removed from their sockets bv means of a needle nosed pliers. The SL4 is a selected VMOS power transistor in a TO 220 packaqes and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SL4 switching elements, take care to insure that the short lead of the three leads) is adiacent to the black dot on the chassis. If the switchina elements are not defective, then the four Phillips screws on the back panel should be removed. The top cover may then be slid off and operation of the clock and power supoly modules stould be checked. The clock module is functioning properly if:
a) 0.1 usec TTL level outouts are observed at pins 2 and 3. b) The PRF of the outputs can be varied over the range of 50 Hz to 20 kHz using the PRF controls.
c) The relative delay between the oin 2 and 3 outputs can be varied by at least 1.0 usec by the DELAY controls.

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed. The power supply board generates $+24 V$ DC to power the other madules. If the voltaqe is $1 e s s$ than $+24 V$, turn off the prime oower and unsolder the lead from the 7824 requlator chip on the power supplv board. Solder a 100 ohm 5 watt resistor to the 7824 output to ground and turn on the orime power. A voltage of +24 volts should be read. If the voltage is less then the oower supply board is defective and should be repaired or replaced.

Fig. 4a POWER SUPPLY

Fig. 4b

$-E A$
-EW

