AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS ENGINEERING - MANUFACTURING

P.O. BOX 265 OGDENSBURG NEW YORK 13669 (315) 472-5270
S.N.

WAFRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 100 MHz .
2) The sync output channel provides TTL level signals. To avoid overdriving the TRIG input channel of some scopes, a 30 db attenuator should be placed at the input to the scope trigger channel. The 5 SNC output precedes the main output when the front panel LEAD-LAG switch is in the LEAD position. The SYNC output lags the main output when the switch is in the LAG position.
3) The output pulse width is controlled by means of the front panel one turn FW contral when the Mode A-E switch is in the A position. Note that the unit may fail if operated at duty cycles exceeding 0.5%.

FW FRF	
$* 0.545$	0 to 10 KHz
5.045	0 to 1 kHz

To voltage contral the output pulse width, set the rear panel switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Fixm \geqslant 10K). (option). With the Mode A-E switch in the E position, the output pulse width equals the pulse width of a TTL trigger signal applied to the TFiIG BNC. (INT-EXT switch in the EXT position).
4) To obtain a stable output display the FFiF control on the front panel should be set mid range. The front panel TFiIG switch should be in the INT position. The DELAY controls and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired Fifif by rotating the FRF contrals.
5) The autput pulse amplitude is controlled by means of the front panel one turn AMF contral. To valtage control the output amplitude, set the rear panel switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Rxn y 1OK) = (option).
6) An extermal clack may be used to control the output FFif of the AVF unit by setting the front panel TFiG toggle switch in the EXT position and applying a 0.2 usec (approx.) TTL level pulse to the TFig ENC connector input. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the SYNC output.
8) The DELAY control controls the relative delay between the reference output pulse provided at the TFigg output and the main output. This delay is variable over the range of 0.1 usec to 100 usec. The TRIG output precedes the main output when the LEAD-LAG switch is in the LEAD position and lags when the switch is in the LAG position=

> MIN

Fiange 1
0.1 usec
0.5 usec

Fiange 2
The AVR-S-FW features an output impedance of the order of several ohms (rather than 50 ohms). The fallowing consequences of this feature should be noted:
a) When used to switch same semiconductor devices (eg. bipolar and VMDS power transistors), the AVF unit will yield much faster switching times than those provided by 50 ohm pulse generators.
b) The AVR unit will safely operate in to load impedances in the range of 50 ohms to an open circuit. However, the fall time may degrade for load impedances higher than fifty ohms.
c) The AVF unit may be effectively converted to a fifty ohm output impedance generator by placing a fifty ohm $1 / 2$ watt carbon composition resistor in series with the output of the unit and the load. The maximum available load voltage will then decrease to 100 valts (from 200 volts).
10) AVF-S-PW-C units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overlaad light. If the unit is overloaded by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument \quad OFF and turn the indicator light oN. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn oN (i.e. light aFF) for about 1 second. If the overlaad condition persists, the instrument will turn oFF again (i.e. light ON) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Dverload conditions may be removed by:

1) Fieducing FFF (i.e. switch to a lower range)
2) Fieducing pulse width (i ee. switch to a lower range)
©) Fiemoving output laad short circuit (if any)

Fig: 2
FRONT PANEL CONTROLS

(6) FW Control. A one turn control which varies the positive output pulse width from 0.1 usec to 5 usec when Mode $A-B$ switch is in the A position. Note that the unit may fail if operated at duty cycles exceeding 0. 5 . $\%=$

\[

\]

(7) MODE A-E. When switch is in the A position, the output pulse width is cantralled by the FW control. When the switch is in the E position and the INT-EXT switch is in the EXT position, the output pulse width equals the width of a TTL level pulse applied to the TFIG port. CAUTION: DO NDT EXCEED 5 US.
(8) AMF Control. A one turn contral which varies the output pulse amplitude fram o ta 200 V.

INT-EXT-MAN Control. With this togqle switch in the INT position, the FFiF of the AVF unit is controlled via an internal clock which in turn is controlied by the FFFF contral. With the toggle switch in the EXT position, the AVF unit requires a 0.2 usec TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source.

SIMGLE PLLSE. For single puise manual operation, set the front panel INT-EXT-MAN switch in the MAN position and push the SINGLE FULSE button.
(11) QVEFLDAD INDICATDF. AVR-3-FW-C units with a serial number higher than 5600 are protected by an autamatic overload protective circuit which controls the front panel overlaad light. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument OFF and turn the indicator light ON . The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn $\square N$ (i.e. light $O F F$) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i=e. light $\square N$) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:

1) Feducing FFiF (i.e. switch to a lower range)
2) Feducing pulse width (i.e. switch to a lower range)

さ) Femoving output load short circuit (if any)

Fig. 3 BACK PANEL CONTROLS

(1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.25 Amp SB).
(2) 1.OA SE: Fuse which protects the output stage if the output duty cycle rating is exceeded.
(3) EA. To voltage control the output amplitude, set the switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Ris > 10k). (option).
(4) EW. To voitage control the output pulse width, set the switch in the EXT position and apply o to +10 volts between terminal A and ground (Rixw > 10k). (option).

Fig. 4a

Fig. 4b

The AVR-3-FW-C consists of the following basic modules:

1) AVR-3-FW-FG pulse generator module
2) AVR-S-CL clock module
3) $+24 V$ power supply board
4) AVF-S-FS power supply module
5) AVR-3-FW pulse width module

The modules are interconnected as shown in Fig. 4. The clock module controls the output PRF and the relative delay between the main output and the SYNC outputs. The FG pulse generator modules generate the output pulse. The F'S module generates o to 200 volts to power the pulse generator module. The PW module controls the output pulse width. In the event of an instrument malfunction, it is most likely that the rear panel 1.OA 58 fuse or some of the output switching elements (SL4) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the cover plate on the bottom side of the instrument. NOTE: First turn off the prime power. The elements may be removed from their sockets by means of a needle nosed pliers. The SL4 is a selected UMOS power transistor in a TO 220 packages and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SL4 switching elements, take care to insure that the short lead (of the three leads) is adjacent to the black dot on the chassis. If the switching elements are not defective, then the four Fhillips screws on the back panel should be removed. The top cover may then be slid off and operation of the clock and power supply modules should be checked. The clock module is functioning properly if:
a) 0.1 usec TTL level outputs are observed at pins 2 and 3 .
b) The FRF of the outputs can be varied over the range of 10 Hz to 10 kHz using the FRF controls.
c) The relative delay between the pin 2 and 3 outputs can be varied by at least 0.1 usec to 1.0 sec by the DELAY controls.

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed. The power supply board generates +24 V DC to power the other modules. If the voltage is less than +24 V , turn off the prime power and unsolder the lead from the 7824 regulator chip on the power supply board. Solder a 100 ohm 5 watt resistor to the 7824 output to ground and turn on the prime power. A valtage of +24 volts should beread. If the voltage is less then the power supply board is defective and should be repaired or replaced.

- EW
- EA

