AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS

 ENGINEERING - MANUFACTURINGP.O. BOX 265 OGDENSBURG NEW YORK 13669
(315)472.5270

BOX 5120 STN. '"F' OTTAWA, ONTARIO匀 CANADA K2C 3H4 (613) 226.5772 TELEX 053.4591

INSTRUCTIONS

MDDEL AVR-4A-FS-FW-LIA-NIM-F FULSE GENERATOR
5.N.:

WAFRRANTY

Avtech Electrosystems Ltd. warrants products of its
manufacture to be free from defects in material and
workmanship under conditions of normal use. If, within one
year after delivery to the original owner, and after prepaid
return by the original owner, this Avtech product is found to
be defective, Avtech shall at its option repair or replace
said defective item. This warranty does not apply to units
which have been dissembled, modified or subjected to
conditions exceeding the applicable specifications or
ratings. This warranty is the extent of the obligation or
liability assumed by Avtech with respect to this product and
no other warranty or guarantee is either expressed or implied.
A. TEST ARRANGEMENT

1) The equipment should be connected in the general fashion shown above. Since the AVR unit provides an output pulse rise time as low as 20 nsec a fast oscilloscope (at least 50 MHz and preferably 200 MHz) should be used to display the waveform.
2) The output PRF is equal to the input trigger pulse PRF.
3) The output pulse width is contralled by the one turn FW control.
4) The output amplitude is controlled by the one turn AMF control.
5) The propagation delay is contralled by the DELAY, DELAY FANGE and DELAY FINE controls. With the DELAY switch in the GUT position, the delay is fixed at about 40 nsec . With the DELAY switch in the IN position, the delay is variable from about 55 to 700 nsec using the DELAY RANGE switch (LOW, 55 ta 100 nsec; HIGH, 100 to 700 nsec) and the one turn DELAY FINE control.
6) The maximum PRF or duty cycle must not be exceeded. Under simultaneaus conditions of wide pulse width, high PRF and high load current, the bias voltage applied to the output power stage decreases and as a result the attainable output peak voltage decreases to less than 400 volts. Under conditions of severe loading the output stage may be damaged.

Fig. 2 FRONT PANEL CONTROLS

(1) ON-OFF Switch. Applies basic prime power to all stages.
(2) INPUT. The external trigger signal is applied at this input.
(3) AMF Control. A one turn control which varies the output pulse amplitude from o to 400 V .
(4) FW Control. A one turn control which varies the positive output pulse width from 0.1 usec to 5 usec.
(5) DUT Connector. ENC connector provides output to a fifty ohm load.
(6) DELAY, DELAY RANGE, DELAY FINE. With the DELAY switch in the OUT position, the delay is fixed at about 40 nsec. With the DELAY switch in the IN position, the delay is variable from about 55 to 700 nsec using the DELAY RANGE switch (LOW, 55 to 100 nsec; HIGH, 100 to 700 nsec) and the one turn DELAY FINE control.

Fig. 3 BACK PANEL CONTROLS
(2)

(1)
(1) FUSED CONNECTOR, VOLTAGE SELECTOF. The detachable power cord is connected at this paint. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.5 A SB).
(2) 0.5 A SE. Protects output stage against overload condition.

Fig. 4 a POWER SUPPLY

The AVF－4A－FW－FS－LIA－NIM consists of the following basic modules：

1）AVR－4A－PG－LIA－NIM pulse generator module
2）$+36 V_{n}+24 V,+5.8 V$ power supply boards
3）AVF－4A－FS power supply module
4）AVF－4A－FS－15 power supply module
The modules are interconnected as shown in Fig． 4.
In the event of an instrument malfunction，it is most likely that the $0.5 \mathrm{~A} S \mathrm{SB}$ fuse or the main power fuse on the rear panel has blown．Replace if necessary．If the unit still does not function，it is most likely that some of the output switching elements（SLI日T）may have failed due to an output short circuit condition or to a high duty cycle condition． The switching elements may be accessed by removing the cover plate on the bottom side of the instrument．The cover plate is removed by removing the two $2-56$ fhillips screws．NOTE： First turn off the prime power．CAUTION：Briefly ground the SLIBT tabs to discharge the 400 volts power supply potential． The elements may be removed from their sockets by means of a needle nosed pliers after removing the four counter sunk 2－56 Phillips screws which attach the small aluminum heat sinks to the body of the instrument．The SLI日T is a selected UMGS power transistor in a TO 220 packages and may be checked on a curve tracer－If defective，replacement units should be ordered directly from Avtech．When replacing the SLI8T switching elements，take care to insure that the short lead （of the three leads）is adjacent to the back of the chassis． （See following Fig．）．The SLI日T elements are electrically isolated from the small aluminum heat sinks but are bonded to the heat sinks using WAKEFIELD TYFE 155 HEAT SINK ADHESIVE．

SLI8T HEAT SINKING

Schroff 09.13 .88

