AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS

 ENGINEERING • MANUFACTURINGP.O. BOX 265 OGDENSBURG NEW YORK 13669 (315) 472.5270

BOX 5120 STN. "F'" OTTAWA, ONTARIO自 CANADA K2C $3 H 4$
(613) 226.5772 TELEX 053.4591

INSTFUCTIONS

WARFANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original ownerg this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

Notes:

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors. etc.) shouldexceed 100 MHz .
2) The output pulse width is controlled by means of the front panel one turn FiN control. To voltage control the output pulse width, set the rear panel switch in the EXT position and apply 0 to +10 V to connector A (Rin $\geqslant 10 K$). (optian).
3) The output pulse amplitude is controlled by means of the front panel one turn AMF control. To voltage contral the output amplitudes set the rear panel switch in the EXT position and apply 0 to $+10 \cup$ to connector B ($\mathrm{Ran}_{\mathrm{m}} \geqslant$ 1OK). (option).
4) The AVR-4-PS features an output impedance of the order of several ohms (rather than 50 ohms). The following consequences of this feature should be noted:
a) When used to switch some semiconductor devices (eg. bipolar and VMos power transistors), the AVF unit will yield much faster switching times than those provided by 50 ohm pulse generators.
b) The AVF unit will safely operate in to load impedances in the range of 50 ohms to an open circuit. However, the fall time may degrade for load impedances higher than 1000 ohms.
c) The AVR unit may be effectively converted to a fifty ohm output impedance generator by placing a fifty ohm carbon composition resistor in series with the output of the unit and the load. The maximum available laad voltage will then decrease to 200 valts (from 400 volts).
d) The qutput switching elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced in the field following the procedure outlined in the FEFAIF: Section.
5) CAUTION: The output stage is protected against overload condition by a 1.0 A slow blow fuse on the main frame back panel. However, the output switching elements (SL19T) may fail if the unit is triggered at a FFF exceeding 1 kHz or at duty cycles resulting in an average output power in excess of 16 watts. Heating and subsequent likely failure of the output stage is reduced if the following action is taken where possible:
a) FFF is kept to a minimumg ien operate in a low FRF range when possible rather than in a high FRF range. b) Keep the output FW to a minimum.
6) The unit can be converted from 110 to $220050-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused voltage selector cable connector assembly.

Fig. 2 FRONT PANEL CONTROLS

(1) ON-DFF Switch. Applies basic prime power to all stages.
(2) OUT Connector. ENC connector provides output to a 50 ohm load.
(ङ) AMP Control. A one turn control which varies the output pulse amplitude from 0 to 400 V .
(4) TRIG Input. The external trigger signal is applied at this input.
(5) FW Control. A one turn control which varies the output pulse width.

Fig. 3 BACK PANEL CONTROLS

(1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In additiong the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.5 A SB).
(2) To voltage control the output pulse width, set the switch in the EXT position and apply 0 to +10 V to connector A (Fin $\geqslant 10 k$). (option).
(3) To voltage control the output amplitude, set the switch in the EXT position and apply 0 to $+10 V$ to connector A (Fin $\geqslant 10 K$). (option).
(4) 1.0 A SB. Frotects output stage against overload condition.

Fig. 4 a
POWER SUPPLY

The AVR-4-FG consists of the following basic modules:

1) AVR-4-FW-PG pulse generator module
2) AVR-4-F'S power supply module

The modules are interconnected as shown in Fig. 4.
In the event of an instrument malfunctiong it is most likely that the 1.0 A slow blow fuse or the main power fuse an the rear panel has blown. Replace if necessary. If the unit still does not function, it is most likely that some of the output switching elements (SLIGT) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the cover plates on the bottom side of the instrument. The cover plate is removed by removing the two 2-56 Philiips screws. NOTE: First turn off the prime power. CAUTION: Eriefly ground the SLigT tabs to discharge the 400 volts power supply potential. The elements may be removed from their sockets by means of a needle nosed pliers after removing the four counter sunk $2-56$ Fhillips screws which attach the small aluminum heat sinks to the body of the instrument. The SL19T is a selected VMOS power transistor in a TO 220 package and may be checked on a curve tracer. If defective, replacement units should be ordered directly fram Avtech. When replacing the $5 L 19 T$ switching elements, take care to insure that the short lead (of the three leads) is adjacent to the back of the chassis. (See following Fig.). The SL19T elements are electrically isolated from the small aluminum heat sinks but are bonded to the heat sinks using WAKEFIELD TYFE 155 HEAT SINK ADHESIVE.

SL19T HEAT SINKING

Sch off
edition A
07.26 .89
$-E W$
$-E A$

