\square P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: (315) 472-5270 FAX: (613) 226-2802

这 BOX 5120 STN. F OTTAWA, ONTARIO CANADA K2C 3 H 4
TEL: (613) 226-5772
FAX: (613) 226-2802

INSTRUCTIONS

MODEL AVR-4B-FW-C-PN FLLSE GENERATDR
S.N. =

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 100 MHz .
2) The sync output channel provides TTL level signals. To avoid overdriving the TRIG input channel of some scopes, a 30 db attenuator should be placed at the input to the scope trigger channel. The TRIG output precedes the main output when the front panel LEAD-LAG switch is in the LEAD pasition. The TRIG output lags the main output when the switch is in the LAG pasition.

The DELAY control contrals the relative delay between the reference output pulse provided at the TRIG output and the main output. This delay is variable over the range of 0.1 us to 100 us.

MIN
Range 1
0.145

Range 2
Range 3
The output pulse width is controlled by means of the front panel one turn PW control and by the PW RANGE control. The minimum and maximum FW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

FW min
PW max

Range 1	FRF	$\begin{aligned} & 0.1 \\ & \max \end{aligned}$		kHz	PRF	$\begin{aligned} & 1.0 \\ & \text { max } \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	kHz
Range 2		1.0				10	45	
	PRF	max	50	kHz	PRF	max	0.5	kHz
Range 3			15			100	45	
	FRF	max	0.5	kHz	FRF	max	50	Hz

To voltage control the output pulse width within each range, set the rear panel switch in the EXT position and apply 0 to +10 volts between terminal A and ground (R_{x} $>10 k$). (option).
4) To obtain a stable output display the PRF control on the front panel should be set mid range. The front panel TRIG toggle switch should be in the INT position. The DELAY controls and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired PRF by rotating the PRF and PRF FINE controls.
5) The output pulse amplitude is controlled by means of the front panel one turn AMP control. To voltage control the output amplitude, set the rear panel switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Rin > 10 K). (option).
6) The output polarity is controlled by the two position polarity switch. CAUTION: To avoid stressing of the output stage it is recommended that the amplitude be reduced to near zero before changing the output polarity.
7) An external clock may be used to control the output PRF of the AVR unit by setting the front panel TRIG toggle switch in the EXT position and applying a 0.2 us (approx.) TTL level pulse to the TRIG BNC connector input. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the TRIG output.
8) For single pulse manual operation, set the front panel INT-EXT-MAN switch in the MAN position and push the SINGLE FULSE button.
9) The AVR-4B-C features an output impedance of the order of several ohms (rather than 50 Ohms). The following consequences of this feature should be noted:
a) When used to switch some semiconductor devices (eg. bipolar and VMDS power transistors), the AVR unit will yield much faster switching times than those provided by 50 Ohm pulse generators.
b) The AVR unit will safely operate in to load impedances in the range of 50 Ohms to an apen circuit. However, the fall time may degrade for load impedances higher than fifty Ohms.
c) The AVR unit may be effectively converted to a fifty Ohm output impedance generator by placing a fifty Ohm carbon composition resistor in series with the output of the unit and the load. The maximum available load voltage will then decrease to 200 valts (from 400 volts).
d) The output switching elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced in the field following the procedure outlined in the REFAIR Section.
10) CAUTION: The output stage is protected against overload condition by a 1.0 A slow blow fuse on the main frame back panel. However, the output switching elements may fail if the unit is triggered at a PRF exceeding 1 kHz or at duty cycles resulting in an average output power in excess of 50 watts. Heating and subsequent likely failure of the output stage is reduced if the following action is taken where possible:
a) PRF is kept to a minimum, i.e. operate in a low PRF range when possible rather than in a high PRF range.
b) Keep the output FW to a minimum.
11) DVERLDAD INDICATOR. AVR-4-C units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument OFF and turn the indicator light ON. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn $O N$ (i.e. light $O F F$) for about 1 second. If the overlad condition persists, the instrument will turn DFF again (i.e. light $O N$) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:

1) Reducing PRF (i.e. switch to a lower range)
2) Reducing pulse width (i.e. switch to a lower range)
3) Removing output load short circuit (if any)
4) The unit can be converted from 110 to $220 \mathrm{~V} 50-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused voltage selector cable connector assembly.

Fig. 2
FRONT PANEI CONTROLS

(1) ON-OFF Switch. Applies basic prime power to all stages.
(2) PRF Control. Varies PRF from 0.1 Hz to 10 kHz as follows:

Range 1	5	Hz	50 Hz	
Range 2	20	Hz	200 Hz	
Range 3	100 Hz	1	kHz	
Range 4	1	kHz	10	kHz

(3) DELAY Control. Controls the relative delay between the reference output pulse provided at the TRIG output (4) the main output (5). This delay is variable over the range of 0.1 to about 100 us. Delay LEADS or LAGS depending on the position of the LEAD-LAG switch.

> MIN MAX

Range 1	0.1 us	1.0	$4 s$
Range 2	1.0 us	10	45
Range 3	10 us	100	45

(4) SYNC Dutput. This output is used to trigger the scope time base. The output is a TTL level 100 ns (approx.) pulse capable of driving a fifty Ohm load. This output precedes the output at (5) if the two position LEAD-LAG switch is in the LEAD position. This output follaws the output at (5) if the switch is in the LAG position. The delay range is variable from 0.1 us to 100 us. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.
(5) QUT Connectors. BNC connectors provide output to a 50 Ghm load.
(6) EW Control. A one turn control and 3 position range
(7) switch which varies the positive output pulse width from 0.1 us to 100 us. The minimum and maximum PW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if pperated at duty cycles exceeding the above.

PW min PW max

(8) AMP Control. A one turn control which varies the output pulse amplitude from 0 to 400 V .
(9) EXI-INT-MAN Control. With this toggle switch in the INT position, the PRF of the AVR unit is controlled via an internal clock which in turn is controlled by the PRF control. With the toggle switch in the EXT position, the AUR unit requires a 0.2 us TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source. With the MODE A-B switch in the A position the output pulse width is controlled by the FW contrals. With the MODE A-B switch in the B position, the output pulse width equals the input trigger pulse width. For single pulse operation, set the INT-EXT-MAN switch in the MAN position.

PQLARITY. The output pulse polarity is controlled by this two position switch. CAUTION: To avoid stressing the output stage, it is recommended that the output amplitude be reduced to near zero before changing the output polarity.

QVEFLOAD INDICATOR. AVR-4-C units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument OFF and turn the indicator light $O N$. The light will stay $O N$ (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn $O N$ (i.e. 1 ight $O F F$) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i=e. light $O N$) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:

1) Reducing PRF (i.e. switch to a lower range)
2) Reducing pulse width (i.e. switch to a lower range)
3) Femoving output load short circuit (if any)

Fig. 3 BACK PANEL CONTROLS

(1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.5 A 5 S).
(2) 1.OA SE. Fuse which protects the output stage if the output duty cycle rating is exceeded.
(3) EA. To voltage control the output amplitude, set the switch in the EXT position and apply 0 to +10 volts between terminal A and ground ($\mathrm{Kin}_{\mathrm{x}}$ > 10K). (option).
(4) EW. To voltage control the output pulse width, set the switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Rin > 1OK). (option).
(5) MDDE A-B. For output pulse width control via the PW controls, the MODE switch should be in the A position. When triggering via an externally applied TTL level trigger pulse, the output pulse width equals the input trigger pulse width if the MoDE switch is in the B position.

Fig: 4 a POWER SUPPLY

The AVR-4-PW-C-PN consists of the following basic modules:

1) AVR-4-PW-PG pulse generator modules (-P and -N)
2) AVR-4-CL clock module
3) +36V, +24V, +5.8V power supply board
4) AVR-4-PS power supply module
5) AVR-4-PW pulse width module

The modules are interconnected as shown in Fig. 4.
In the event of an instrument malfunction, it is most likely that the 1.0 A slow blow fuse or the main power fuse on the rear panel has blown. Replace if necessary. If the unit still does not function, it is most likely that some of the output switching elements (SL19T) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the cover plates on the bottom side of the instrument. The cover plate is removed by removing the two 2-56 Phillips screws. NOTE: First turn off the prime power. CAUTION: Briefly ground the SL19T tabs to discharge the 400 volts power supply potential. The elements may be removed from their sockets by means of a needle nosed pliers after removing the four counter sunk 2-56 Phillips screws which attach the small aluminum heat sinks to the body of the instrument. The SL19T is a selected VMOS power transistor in a TO 220 package and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SL19T switching elements, take care to insure that the short lead (of the three leads) is adjacent to the back of the chassis. (See following Fig.). The SLI9T elements are electrically isolated from the small aluminum heat sinks but are bonded to the heat sinks using WAKEFIELD TYPE 155 HEAT SINK ADHESIVE. If the switching elements are not defective, then the four Phillips screws on the back panel should be removed. The top cover may then be slid off and the operation of the clock and power supply modules checked. The clock module is functioning properly if:
a) 0.1 usec TTL level outputs are observed at pins 2 and 3. b) The PRF of the outputs can be varied over the range of 10 Hz to 10 KHz using the PRF controls.
c) The relative delay between the pin 2 and 3 outputs can be varied by at least 1 nsec by the DELAY control.

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed.

SL19T HEAT SINKING

BACK | (155 | |
| :--- | :--- |
| $\begin{array}{ll}\text { HEAT SINK } \\ \text { ADHESIVE* }\end{array}$ | |

Schrobf 04.09.92 Edition D
-EW
-EA

