\square P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: (315) 472-5270 FAX: (613) 226-2802

B BOX 5120 STN. F OTTAWA, ONTARIO CANADA K2C $3 \mathrm{H}_{4}$
TEL: (613) 226-5772
FAX: (613) 226-2802

INSTRUCTIONS

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 100 MHz .
2) The sync output channel provides TTL level signals. To avoid overdriving the TFIG input channel of some scopes. a 3 do attenuator should be placed at the input to the scope trigger channel.
3) The desired output polarity is selected by means of the front panel FOLAFITY switch. With the FOLARITY switch in the F position, the negative output pulse generator is rendered inactive. Likewise, with the FOLAFITY switch in the N position, the positive pulse generator is rendered inactive.
4) The output pulse widths for the positive and negative outputs are controlled by means of the front panel one turn FW control and by the FW FiANGE contral. The minimum and maximum FW for each range and the corresponding maximum FRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

FW min

O. 1 LISec

FFFF max 10 KHz
Fange 2

Fiange 3

1. 0 Lisec

PRF max 5 KHz
10 usec
FRF max 500 Hz

Fange 1

FW max
1.0 usec FFF max 5 KHz

10 usec
FFF max 500 Hz

100 usec
FRF max 50 Hz

To voltage control the output pulse width, set the switch in the EXT position and apply 0 to +10 valts between terminal A and ground (FixN $\geqslant 10 k$). (option).
5) To obtain a stable output display the FRF control on the front panel should be set mid range. The front panel TFiG toggle switch should be in the INT position. The DELAY contrals and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired FFF by ratating the FRF and FiRF FINE controls.
6) The output pulse amplitudes for the positive and negative outputs are controlled by means of the front panel one turn AMF control. To valtage control the output amplitude, set the switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Rin $\geqslant 10 k$. (option).
7) An external clock may be used to control the output Fif of the AVR unit by setting the front panel TRIG toggle switch in the EXT position and applying a 0.2 usec (approx.) TTL level pulse to the TFIG BNC connector input. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the SYNC autput.
8) The AVF-4-FW features an output impedance of the order of several ohms (rather than 50 ohms). The following consequences of this feature should be noted:
a) When used to switch some semiconductor devices (eg. bipolar and VMOS power transistors), the AVF unit will yield much faster switching times than those provided by 50 ohm pulse generators.
b) The AVF unit will safely operate in to load impedances in the range of 50 ohms to an open circuit. However, the fall time may degrade for load impedances higher than fifty ohms.
c) The AVR unit may be effectively converted to a fifty ohm output impedance generator by placing a fifty ohm $1 / 2$ watt carbon composition resistor in series with the output of the unit and the load. The maximum available load voltage will then decrease to 200 volts (from 400 valts).
d) The output switching elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced in the field following the procedure outlined in the FEFAIF Section.
9) CAUTION: The output stage is protected against overload condition by a 1.0 A slow blow fuse on the main frame back panel. However, the output switching elements (SL19T) may fail if the unit is triggered at a PRF exceeding 1 kHz or at duty cycles resulting in an average output power in excess of 16 watts. Heating and subsequent likely failure of the output stage is reduced if the following action is taken where possible:
a) FFF is kept to a minimum, ie. operate in a low FRF range when possible rather than in a high PFF range.
b) Keep the output FW to a minimum.

OVERLOAD INDICATOR. AVR-4-FW-C units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument GFF and turn the indicator light $O N$. The light will stay $O N$ (i.e. output DFF; for about 5 seconds after which the instrument will attempt to turn ON (i.e. light OFF) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light ON) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:

1) Feducing FRF (i.e. switch to a lower range)
2) Fieducing pulse width (i.e. switch to a lower range)
3) Removing output load short circuit (if any)
4) The unit can be converted from 110 to $220 \mathrm{~V} 50-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused voltage selector cable connector a三sembly.

- Fig. 2

FRONT PANEL CONTROLS

(1) ON-OFF Switch. Applies basic prime power to all stages.
(2) PFF Control. Varies FRF from 0.1 Hz to 10 KHz as follows:

Fange 1	10 Hz	100 Hz	
Range 2	100 Hz	1	KHz
Range 3	1	KHz	10
KHz			

(3) DELAY Control. Controls the relative delay between the reference output pulse provided at the TRIG output (4) the main outputs (5), (6). This delay is variable over the range of 0.1 to about 100 usec. Delay LEADS or LAGS depending on the position of the LEAD-LAG switch.

MIN
Fange 1
0. 1 usec

Range 2
Range 3
1.0 usec

10 usec

MAX
1.0 usec

10 usec
100 usec
(4) SYNC Dutput. This output is used to trigger the scope time base. The output is a TTL level 100 nsec (approx.) pulse capable of driving a fifty ohm load. This output precedes the output at (5), (6) if the two position LEAD-LAG switch is in the LEAD position. This output follows the output at (5) if the switch is in the LAG position. The delay range is variable from 0.1 usec to 100 usec. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.
(5) QUT P. DUT N Connector. GNC connector provides output
(6) to a 50 ohm load.
(7) FW Eontrol. A one turn contral and 3 position range switch which varies the positive output pulse width from Q. 1 usec to 100 usec. The minimum and maximum FW for each range and the corresponding maximum Fif are as follows. Note that the unit may fail if pperated at duty cycles exceeding the above.

PW min
FW max

Fiange 1
0. 1 usec

FFF mas 1 kHz

1. 0 usec

FFiF mas 1 KHz

10 usec
FFF max 500 Hz
1.0 usec

FiFiF max 1 Hz

10 usec
FRFF max 500 Hz

100 usec
FFFF max 50 Hz
(8) AMF Control. A one turn control which varies the output pulse amplitude from o to 400 V.
(9) EXT-INT Control. With this toggle switch in the INT position, the FRF of the AVR unit is controlled via an internal clock which in turn is contralled by the FFF control. With the toggle switch in the EXT position. the AVF unit requires a 0.2 usec TTL level pulse applied at the TFIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the enternal trigger source.
(10) SINGLE FULSE. For single pulse manual operation, set the front panel INT-EXT-MAN switch in the MAN position and push the SINGLE FULSE button.

DVEFLDAD INDICATOR. AVF-4-FW-C unjts with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded (tey operating at an exceedingly high duty cycle or by operating into a short circuit), the protertive circuit will turn the output of the instrument ofF and turn the indicator light ON. The light will stay $O N$ (i.e. output DFF) for about 5 seconds after which the instrument will attempt to turn on (ine. light OFF) for about 1 second. If the overload condition persists: the instrument will turn OFF again (i.e. light ON) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normai operation. Qverload conditions may be removed by:

```
1) Feducing FFF (i.e. switch to a lower range)
2) Reducing pulse width (i.e. Switch to a lower range)
3) Femoving output load short circuit (if any)
```

Fig. 3 BACK PANEL CONTROLS

(1)

FUSED CONNEETOF: VOLTAGE SELECTOF: The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.5 A SB).
(2) 1.0 A sB. Frotects output stage against overioad condition.
(3) EA. To voltage control the output amplitude, set the switch in the EXT positian and apply 0 to +10 volts between terminal A and ground (Rim v, lok): (option).
(4) EW. To voltage control the output fulse width, set the switch in the EXT position and apply o to +10 volts between terminal io and ground (RIN $\%$ 1OK). (option).

Fig. 4a POWER SUPPLY

The AVFi-4-FW-C-PN consists of the following basic modules:

1) AVR-4-FW-FG pulse generator modules ($-F$ and $-N$)
2) AVFi-4-CL clack module
3) + B6V, $+24 V_{5}+5.8 V$ power supply board
4) AVK-4-FS power supply module
5) AVR-4~FW pulse width module

The modules are interconnected as shown in Fig. 4.
In the event of an instrument malfunction; it is most likely that the 1.0 A slow blow fuse or the main power fuse on the rear panel has blown. Feplace if necessary. If the unit still does not function, it is most likely that some of the output switching elements (SL17T) may have failed due to an autput short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the cover plates on the bottom side of the instrument. The cover plate is removed by removing the two 2-S6 Phillips screws. NOTE: First turn off the prime power. CAUTIDN: Briefly ground the SL17T tabs to discharge the 400 volts power supply patential. The elements may be removed from their sockets by means of a needle nosed pliers after removing the four counter sunk $2-56$ Fhillips screws which attach the small aluminum heat sinks to the body of the instrument. The SLI9T is a selected VMDS power transistor in a TO 220 package and may be checked on a curve tracer. If defective, replacement units should be ordered directly fram Avtech. When replacing the SL19T switching elements, take care to insure that the short lead (of the three leads) is adjacent to the back of the chassis. (See following Fig.). The SLI9T elements are electrically isolated from the small aluminum heat sinks but are bonded to the heat sinks using WAKEFIELD TYFE 155 HEAT SINK ADHESIVE. If the switching elements are not defectives then the four fhillips sorews on the back panel should be removed. The top cover may then be slid off and the operation of the clock and power supply modules checked. The clock madule is functioning properly if:
a) O. 1 usec TTL level outputs are observed at pins 2 and 3 .
b) The FFiF of the outputs can be varied over the range of 10 Hz to 10 KHz using the Fifi contrals.
c) The relative delay between the pin 2 and 3 outputs can be varied by at least 1 nsec by the DELAY contral.

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed.

Schrobf 11.07 .91 b-dition C
-EW
-EA

- AT
- PWT

