AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS

ENGINEERING - MANUFACTURING
P.O. BOX 265 OGDENSBURG NEW YORK 13669 1315) 472-5270

BOX 5120 . STN. "F"

INSTRUCTIONS

MODEL AUR-4E-FW-C-FN FLLLSE GENEFATOR

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 100 MHz .
2) The sync output channel provides TTL level signals. To avoid overdriving the TFIG input channel of some scopes, a 30 db attenuator should be placed at the input to the scope trigger channel.
3) The desired output polarity is selected by means of the front panel POLARITY switch. With the FOLARITY switch in the F position, the negative output puise generator is rendered inactive. Likewise. with the FOLARITY switch in the N position, the positive pulse generator is rendered inactive.
4) The output pulse widths for the positive and negative outputs are controlled by means of the front panel one turn PW contral and by the FW RANGE contral. The minimum and maximum PW for each range and the corresponding maximum FRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

	PW min	FW max
Fange 1	0.1 usec	1.0 usec
	FRF max 1 kiHz	PRF max 1 kHz
Range 2	1.0 usec	10 usec
	FRF max 1 kHz	PRF max 500 Hz
Fange 3	10 usec	100 usec
	FRFF max 500 Hz	FFFF max 50 Hz

To voltage contral the output pulse width within each range, remove the jumper wire between banana piugs A and E on the back panel and apply 0 to $+10 V$ to connector B (Fin $\geqslant 10 \mathrm{~K}$). (option).
5) To obtain a stable output display the FFF control on the front panel should be set mid range. The front panel TFilG toggle switch should be in the INT position. The DELAY controls and the scope triggering contrals are then adjusted to obtain a stable output. The scope may then be used to set the desired FRF by rotating the FRF and PRF FINE controls.
6) The output pulse amplitudes for the positive and negative outputs are controlled by means of the front panel one turn AMP control. To voltage contral the output amplitude, remove the jumper wire between banana plugs A and E on the back panel and apply 0 to $+10 \cup$ to connector B (Fixn $\geqslant 10 K$). (option).
7) An external clock may be used to control the output PFF of the AVF unit by setting the front panel TFIG toggle switch in the EXT position and applying a 0.2 usec (approx.) TTL level pulse to the TRIG ENC connector input. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the SYNC output.
B) The AVF-4-Fid features an output impedance of the order of several ohms (rather than 50 ohms). The following consequences of this feature should be noted:
a) When used to switch some semiconductor devices (eg. bipalar and VMOS power transistors), the AVR unit will yield much faster switching times than those provided by 50 ohm pulse generators.
b) The AVF unit will safely operate in to load impedances in the range of 50 ohms to an open circuit. However, the fall time may degrade for laad impedances higher than fifty ohms.
c) The AVF unit may be effectively converted to a fifty ohm output impedance generator by placing a fifty ohm $1 / 2$ watt carbon composition resistor in series with the output of the unit and the load. The maximum available load voltage will then decrease to 200 volts (from 400 volts).
d) The output switching elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced in the field following the procedure outlined in the REFAIR Section.
9) CAUTIDN: The output stage is protected against overload condition by a 1.0 A slow blow fuse on the main frame back panel. Howeverg the output switching elements (SL19T) may fail if the unit is triggered at a FRF exceeding $i \mathrm{kHz}$ or at duty cycles resulting in an average output power in excess of 16 watts. Heating and subsequent likely failure of the output stage is reduced if the following action is taken where possible:
a) FFF is kept to a minimum, ie. operate in a low FRF range when possible rather than in a high FFF range.
b) Keep the output FW to a minimum.
10) DVEFLDAD INDICATDF. AVF-4-FW-C units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overlaad light. If the unit is averlaaded by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument aFF and turn the indicator light $\square N$. The light will stay $\square N(i . e$. output DFF) for about 5 seconds after which the instrument will attempt to turn ON (i=e. light $\square F F$) for about 1 second. If the overload condition persists; the instrument will turn OFF again (ise. light DN) for another 5 seconds. If the overload condition has been removed; the instrument will turn on and resume normal operation. Overload conditions may be removed by:

1) Fieducing FFiF (i=e. switch to a lower range)
2) Feducing pulse width (i.e. switch to a lower range)
3) Fiemoving output load short circuit (if any)
4) The unit can be converted from 110 to $220 \mathrm{~V} 5-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused voltage selector cable connector assembly.

Fig. 2
FRONT PANEL CONTROLS

(1) DN-OFF Switch. Applies basic prime power to all stages.
(2) FFF Control. Varies FFF from 0.1 Hz to 1 KHz as fallows:

| Fiange 1 | 5 | Hz | 50 Hz |
| :--- | :--- | :--- | :--- | :--- |
| Fange 2 | 20 Hz | 200 Hz | |
| Fiange 3 | 100 Hz | 1 | KHz |

(3) DELAY Control. Controls the relative delay between the reference output pulse provided at the TFig output (4) the main outputs (5), (6). This delay is variable over the range of 0.1 to about 100 usec. Delay LEADS or LAGS depending on the position of the LEAD-LAG switch.

MIN
MAX

Range 1	0.1 usec	1.0 usec
Fange 2	1.0 usec	10 usec
Fange 3	10 usec	100 usec

SYNC gutput. This output is used to trigger the scope time base. The output is a TTL level 100 nsec (approx.) pulse capable of driving a fifty ohm load. This output precedes the output at (5), (6) if the two position LEAD-LAG switch is in the LEAD position. This output follows the output at (S) if the switch is in the LAG position. The delay range is variable from 0.1 usec to 100 usec. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.

(6) to a 50 ohm 1 口ad.

FW Control. A one turn control and 3 position range switch which varies the positive output pulse width from O. 1 LSec to 100 usec. The minimum and maximum Fik for each range and the corresponding maximum FFiF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

FW min
0.1 usec FFFF max 1 kHz
1.0 usec

FRF mas 1 KHz

10 usec
fiF max 500 Hz

FW max
1.0 usec FFF max 1 k゙Hz

10 usec FFF max 500 Hz

100 usec Fifir max 50 Hz
(8) AMF Control. A ane turn control which varies the output pulse amplitude from o ta 400 V .

EXT-INT Control. With this toggle switch in the INT positian, the FFF of the AVF unit is controlled via an internal clock which in turn is controlled by the FFF contral. With the toggle switch in the EXT position, the AVF unit requires a 0.2 usec TTL level pulse applied at the TFIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source.

SINGLE FLLSE. For single pulse manual operation, set the front panel INT-EXT-MAN switch in the MAN position and push the SINGLE FULSE button.

DVEFLDAD INDICATOF. AVF-4-FW-C units with a serial number higher than 5 boo are praterted by an automatic averload protective circuit which controls the front panel overload light. If the unit is overloaded by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument OFF and turn the indicator light ON. The light will stay ON iise. output OFF) for about 5 seconds after which the instrument will attempt to turn ON (ine. light OFF) for about 1 second. If the overload condition persists, the instrument will turn GFF again (i-e. light $O N$) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Qverload conditions may be removed by:

1) Reducing FiRF (i.E. switch to a lower range)
2) Feducing pulse width (i.e. switch to a lower range)
3) Fiemoving output 1 aad short circuit (if any)

Fig. 3 BACK PANEL CONTROLS

(1) FUSED CONNECTOF, VOLTAGE SELECTOF: The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.5 A 5 S).
(2) 1.0 A SB. Frotects output stage against overload condition.

The AUR-4-FW-C-FN consists of the following basic modules:

1) AVF-4-FW-FG pulse generator modules (-F and -N)
2) AVR-4-CL clock module
3) $+36 \mathrm{~V},+24 \mathrm{~V},+5.8 \mathrm{~V}$ power supply board
4) AVK-4-FS power supply module
5) AVF-4-FW pulse width module

The modules are interconnected as shown in Fig. 4.
In the event of an instrument malfunctions it is most likely that the 1.0 A slow blow fuse or the main power fuse on the rear panel has blown. Replace if necessary. If the unit still does not function, it is most likely that some of the output switching elements (SL19T) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the cover plates on the botton side of the instrument. The cover plate is removed by removing the two 2-56 Fhillips screws. NOTE: First turn off the prime power. CAUTION: Eriefly ground the SLI9T tabs to discharge the 400 volts power supply potential. The elements may be removed from their sockets by means of a needle nosed pliers after removing the four counter sunk $2-56$ Fhillips screws which attach the small aluminum heat sinks to the body of the instrument. The SL19T is a selected VMOS power transistor in a TO 220 package and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SLI9T switching elements, take care to insure that the short lead (of the three leads) is adjacent to the back of the chassis. (See following fig.). The SLI9T elements are electrically isolated from the small aluminum heat sinks but are bonded to the heat sinks using WAKEFIELD TYFE 155 HEAT SINK ADHESIVE. If the switching elements are not defective, then the four Fhillips screws on the back panel should be removed. The top caver may then be slid off and the operation of the clock and power supply modules checked. The clock module is functioning properly if:
a) O. 1 usec TTL level outputs are observed at pins 2 and 3 .
b) The FRF of the outputs can be varied over the range of 10 Hz to 1 KHz using the Fiff controls.
c) The relative delay between the pin 2 and 3 outputs can be varied by at least 1 ' nsec by the DELAY control.

The sealed clock module must be returned ta Avtech for repair or replacement if the above conditions are not observed.

SL19T HEAT SINKING

Suchrabf 01.10.91 Edition B
-EW
-EA

