AVTECH ELECTROSYSTEMS LTD.
 NANOSECOND WAVEFORM ELECTRONICS ENGINEERING - MANUFACTURING

P.O. BOX 265

OGDENSBURG NEW YORK
13669 (315) 472-5270

BOX 5120 . STN. "F"

- OTTAWA. ONTARIO CANADA K2C 3H4 TEL: $16131226-5772$ FAX: (613) 226-2802 TELEX: 053-4591

INSTRUCTIONS

MODEL AVR-4B-FW-C-FN-KFU1 PLLSE GENEFATOR

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If; within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

Notes:

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 100 MHz .
2) The sync output channel provides TTL level signals. To avoid overdriving the TFIG input channel of some scopes, a 30 db attenuator should be placed at the input to the scope trigger channel.
J) The desired output polarity is selected by means of the front panel FOLARITY switch. With the FOLAFITY switch in the F position, the negative output pulse generator is rendered inactive. Likewiseg with the FOLARITY Ewitch in the N position, the positive pulse generator is rendered inactive.
3) The output pulse widths for the positive and negative outputs are controlled by means of the front panel one turn FW control and by the FW FANGE control. The minimum and maximum FW for each range and the corresponding maximum FFF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

	PW min	Fid max
Fange 1	0. 1 usec	1.0 usec
	FFF max 1 KHz	PRF max 1 KHz
Range 2	1.0 usec	10 usec
	FFF max 1 KHz	FRF max 500 Hz
Range 3	10 usec	100 usec
	FRF max 500 Hz	FFF max 50 Hz

To voltage control the output pulse width within each range, remove the jumper wire between banana plugs A and B on the back panel and apply 0 to $+10 V$ to connector B ($\left.\mathrm{Fin}_{\mathrm{IN}} \geqslant 10 \mathrm{~K}\right)$. (option).
5) To obtain a stable output display the FFF control on the front panel should be set mid range. The front panel TFIG toggle switch should be in the INT position. The DELAY controls and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired FFF by rotating the FRF and FRF FINE controls.
6) The output pulse amplitudes for negative outputs are controlled by panel one turn AMF control. To voltage control the output amplitude, remove the jumper wire between banana plugs A and B on the back panel and apply 0 to +10 V to connector B (Rin $\geqslant 10 K$). (option).
7) An external clock may be used to control the output PRF of the AVR unit by setting the front panel TRIG toggle switch in the EXT position and applying a 0.2 usec (approx.) TTL level pulse to the TRIG BNC connector input. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the SYNC output.
8) The AVR-4-FW features an output impedance of the order of several ohms (rather than 50 ohms). The following consequences of this feature should be noted:
a) When used to switch some semiconductor devices (eg. bipolar and UMOS power transistors), the AVR unit will yield much faster switching times than those provided by 50 ohm pulse generators.
b) The AVR unit will safely operate in to load impedances in the range of 50 ohms to an open circuit. However, the fall time may degrade for load impedances higher than fifty ohms.
c) The AVR unit may be effectively converted to a fifty ohm output impedance generator by placing a fifty ohm $1 / 2$ watt carbon composition resistor in series with the output of the unit and the load. The maximum available load voltage will then decrease to 250 volts (fram 500 volts).
d) The output switching elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced in the field following the procedure outlined in the REPAIR Section.
9) CAUTION: The output stage is protected against overload condition by a 1.0 A slow blow fuse on the main frame back panel. However, the output switching elements (SL20) may fail if the unit is triggered at a PRF exceeding 1 kHz or at duty cycles resulting in an average output power in excess of 16 watts. Heating and subsequent likely failure of the output stage is reduced if the following action is taken where possible:
a) PRF is kept to a minimums ie. operate in a low PRF range when possible rather than in a high PRF range.
b) Keep the output PW to a minimum.
10) The unit can be converted from 110 to $220 \mathrm{~V} 50-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused voltage selector cable connector assembly.

Fig. 2

FRONT PANEL CONTROLS

(1) ON-DFF Switch. Applies basic prime power to all stages.
(2) PRF Control. Varies FRF from 10 Hz to 1 KHz as follows:

| Range 1 | 10 Hz | 50 Hz |
| :--- | ---: | ---: | ---: |
| Range 2 | 10 Hz to 300 Hz | |
| Range 3 | 10 Hz to 1 KHz | |

5) QUT N Connector. ENC connector provides output to a fifty ohm load.
(6) QUT P Connector. BNC connector provides output to a fifty ohm load.
(7) PW Control. A one turn control and 3 position range
(日) switch which varies the positive output pulse width from O. 1 usec to 10 usec. The minimum and maximum PW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

FW min
0.1 usec

PRF max 1 KHz
1.0 usec

PRF max 1 kHz
10 usec
FRF $\max 500 \mathrm{~Hz}$

PW max
1.0 usec FRF max 1 KHz

10 user FFF max 500 Hz

100 usec PRF max 50 Hz
(9) AMF Control. A one turn control which varies the output pulse amplitude from 0 to 500 V to a fifty ohm load.

PQLARITY Control. With the switch in the P position, the negative output pulse generator is rendered inactive. With the switch in the N position, the positive output pulse generator is rendered inactive.

EXT-INT Control. With this toggle switch in the INT position, the FRF of the AVR unit is controlled via an
internal clock which in turn is controlled by the PRF and PRF FINE controls. With the toggle switch in the EXT position, the AVR unit requires a.0.2 usec TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source.
(12) TRIG Input. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.

Fig. 3 BACK PANEL CONTROLS

(1) FUSED CONNECTOF, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.5 A SB).
(2) To voltage control the output pulse width, remove the jumper wire between banana plugs A and E and apply o to +10 V to connector B ($\mathrm{Rin}_{\mathrm{IN}} \geqslant 10 \mathrm{~K}$). (option).
(3) To voltage control the output amplitude, remove the jumper wire between banana plugs A and B and apply O to +10 V to connector B (Rim $\geqslant 10 \mathrm{~K}$). (option).
(4) 1.0 A SB. Frotects output stage against overload condition.

Fig. 4a POWER SUPPLY

The AVR-4-FW-C-FN consists of the following basic modules:

1) AVR-4-FW-FG pulse generator modules (-F and -N)
2) AVR-4-CL clock module
3) $+36 \mathrm{~V},+24 \mathrm{~V},+5.8 \mathrm{~V}$ power supply board
4) AVR-4-PS power supply module
5) AVR-4-PW pulse width module

The modules are interconnected as shown in Fig. 4.
In the event of an instrument malfunction, it is most likely that the 1.0 A slow blow fuse or the main power fuse on the rear panel has blown. Replace if necessary. If the unit still does not function, it is most likely that some of the output switching elements (SL20) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by first turning off the prime power and removing the 4 Fhillips screws on the back panel and then removing the top cover (slides back). The SL20 elements may be removed from their sockets by removing the two $2-56$ screws which secure the transistor in the socket. CAUTION: Before touching or removing the transistors, the cases of the transistors should be briefly shunted to ground to discharge voltages as high as 500 volts which may be present. SL20 replacement units must be ordered from Avtech. The clock module is functioning properly if:
a) 0.1 usec TTL level outputs are observed at pins 2 and 3 . b) The PRF of the outputs can be varied over the range of 10 Hz to 1 KHz using the FRF controls.
c) The relative delay between the pin 2 and 3 outputs can be varied by at least 1 nsec by the DELAY control.

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed.

Schrobf 09.29 .89
1

- EW
-EA

