TEL: 1-800-265-6681
FAX: 1-800-561-1970
U.S.A. \& CANADA
e-mail: info@avtechpulse.com

AVTECH ELECTROSYSTEMS LTD.
NANOSECOND WAVEFORM ELECTRONICS SINCE 1975
$\square \quad$ P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: (315) 472-5270
FAX: (613) 226-2802

X BOX 5120 STN. F OTTAWA, ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772
FAX: (613) 226-2802

INSTRUCTIONS

MODEL AVR-4B-PW-C PULSE GENERATOR
S.N.:

WAERANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1
 PULSE GENERATOR TEST ARRANGEMENT

Notes:

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 100 MHz .
2) The sync output channel provides TTL level signalsn To avoid overdriving the TRIG input channel of some scopes, a 30 db attenuator should be placed at the iriput to the scope trigger channel. The TRIG output precedes the main output when the front panel LEAD-LAG switch is in the LEAD position. The TFIG output lags the main output when the switch is in the LAG position.

The DELAY control controls the relative delay between the reference output pulse provided at the TRIG output and the main output. This delay is variable over the range of 0.1 usec ta 100 usec.

MIN MAX

Fiange 1	0.1 usec	1.0 usec
Fiange 2	1.0 usec	10 usec
Fange 3	10 usec	100 usec

3) The output pulse width is controlled by means of the front panel one turn FW contral and by the FW FANGE control. The minimum and maximum FW for each range and the corresponding maximum FRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

FW min

> 0.1 usec FRF max 1 kHz
1.0 u듣

FRF max 1 KHz
Fange 3

10 usec
FRF max 500 Hz

FW max
1.0 usec
FFiF $\max 1$ kHz

10 usec
FRF max 500 Hz

100 usec
PRF max 50 Hz

To voltage control the output pulse width within each range, set the rear panel switch in the EXT position and apply O to +10 voits between terminal A and ground $\left\langle R_{x N}\right.$ $\geqslant 10 k$). (option).
4) To obtain a stable output display the FRF controi on the front panel should be set mid range. The front panel TRIG toggle switch should be in the INT position. The DELAY controls and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired PRF by rotating the FFFF and PRF FINE controls.
5) The output pulse amplitude is controlled by means of the front panel one turn AMP control. To voltage control the output amplitude, set the rear panel switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Rin 》10k). (option).
6) An external clock may be used to control the output PRF of the AVR unit by setting the front panel TRIG toggle switch in the EXT position and applying a 0.2 usec (approx.) TTL level pulse to the TRIG BNC connector input. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the TRIG output.
7) The AVR-4-FW features an output impedance of the order of several ohms (rather than 50 ohms). The following consequences of this feature should be noted:
a) When used to switch some semiconductor devices (eg. bipolar and UMOS power transistors), the AVR unit will yield much faster switching times than those provided by 50 ohm pulse generators.
b) The AVF unit will safely operate in to load impedances in the range of 50 ohms to an open circuit. However, the fall time may degrade for load impedances higher than fifty ohms.
C) The AUR unit may be effectively converted to a fifty ohm output impedance generator by placing a fifty ohm carbon composition resistor in series with the output of the unit and the load. The maximum available load voltage will then decrease to 200 volts (from 400 volts).
d) The output switching elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced in the field following the procedure outlined in the REFAIR Section.
8) CAUTION: The output stage is protected against overload condition by a 1.0 A slow blow fuse on the main frame back panel. However, the output switching elements may fail if the unit is triggered at a PRF exceeding 1 kHz or at duty cycles resulting in an average output power in excess of 16 watts. Heating and subsequent likely failure of the output stage is reduced if the following action is taken where possible:
a) FRF is kept to a minimum, i.e. operate in a low PRF range when possible rather than in a high PRF range. b) Keep the output FW to a minimum.
9) The unit can be converted from 110 to $220 \mathrm{~V} 50-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused voltage selector cable connector assembly.

(1) ON-DFF Switch. Applies basic prime power to all stages.
(2) FRF Control. Varies FRF from 0.1 Hz to 1 KHz as follows:

Fange 1	5	Hz
Range 2	20 Hz	50 Hz
Range 3	100 Hz	1

(3) DELAY Control. Controls the relative delay between the reference output pulse provided at the TRIG output (4) the main output (5). This delay is variable over the range of 0.1 to about 100 usec. Delay LEADS or LAGS depending on the position of the LEAD-LAG switch.

MIN
MAX

Range 1	0.1 usec	1.0 usec
Range 2	1.0 usec	10 user
Range 3	10 usec	100 usec

(4) TRIG Dutput. This output is used to trigger the scope time base. The output is a TTL level 100 nsec (approx.) pulse capable of driving a fifty ohm load. This output precedes the output at (5) if the two position LEAD-LAG switch is in the LEAD position. This output follows the output at (5) if the switch is in the LAG position. The delay range is variable from 0.1 usec to 100 usec. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.
(5) OUT Connector. ENC connector provides output to a 50 ohm load.
(6) FW Control. A one turn control and 3 position range (7) switch which varies the positive autput pulse width from 0.1 usec to 100 usec. The minimum and maximum PW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

FW min
Range 1

Range 2

Range 3

PW max
1.0 usec

PRF max 1 kHz
10 usec
PRF ma: 500 Hz
100 usec
PFF max 50 Hz
(8) AMF Control. A one turn control which varies the output pulse amplitude from 0 to 400 V.
(9) EXT-INT Control. With this toggle switch in the INT position, the FRF of the AVR unit is controlled via an internal clock which in turn is controlled by the PRF control. With the toggle switch in the EXT position, the AVR unit requires a 0.2 usec TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source.

Fig. 3
BACK PANEL CONTROLS

(1) FUSED CONNECTOF, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.5 A SB).
(2) 1.OA SE. Fuse which protects the output stage if the output duty cycle rating is exceeded.
(3) EA. To voltage control the output amplitude, set the switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Rin $>10 k$). (option).
(4) EW. To voltage control the output pulse width, set the switch in the EXT position and apply o to +10 volts between terminal A and ground (Rin $>10 k$). (option).
(5) DS. To apply a DC offset to the output pulse, apply the desired DC offset potential to the os solder terminals ($V_{\max } \leqslant \pm 50$ volts, $I_{\max } \leqslant \pm 200 \mathrm{~mA}$). (option)

The AVR-4-PW-C-FN consists of the following basic modules:

1) AVR-4-PW-PG pulse generator module
2) AVR-4-CL clack module
3) +36V, +24V, +5.8V power supply board
4) AVR-4-PS power supply module
5) AVR-4-PW pulse width madule

The modules are interconnected as shown in Fig. 4.
In the event of an instrument malfunction, it is most likely that the 1.0 A slow blow fuse or the main power fuse on the rear panel has blown. Replace if necessary. If the unit still does not function, it is most likely that some of the output switching elements (SLI9T) may have failed due to an output shart circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the cover plates on the bottom side of the instrument. The cover plate is removed by removing the two 2-56 Phillips screws. NDIE: First turn off the prime power. CAUTION: Briefly ground the SLI9T tabs to discharge the 400 valts power supply potential. The elements may be removed from their sockets by means of a needle nosed pliers after removing the four counter sunk 2-56 Phillips screws which attach the small aluminum heat sinks to the body of the instrument. The SL19T is a selected UMOS power transistor in a TO 220 package and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SLI9T switching elements, take care to insure that the short lead (of the three leads) is adjacent to the back of the chassis. (See following Fig.). The SL19T elements are electrically isolated from the small aluminum heat sinks but are bonded to the heat sinks using WAKEFIELD TYPE 155 HEAT SINK ADHESIVE. If the switching elements are not defective, then the four Phillips screws on the back panel should be removed. The top cover may then be slid off and the operation of the clock and power supply modules checked. The clock module is functioning properly if:
a) 0.1 usec TTL level outputs are observed at pins 2 and 3.
b) The FRF of the outputs can be varied over the range of 10 Hz to 1 KHz using the PRF controls.
c) The relative delay between the pin 2 and 3 outputs can be varied by at least 1 nsec by the DELAY control.

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed.

SL19T HEAT SINKING

09.06 .90 EDITION B

