AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS

 ENGINEERING . MANUFACTURINGP.O. BOX 265 OGDENSBURG
NEW YORK 13669 (315) 472.5270

INSTRUCTIONS

MODEL AUR-4E-FW-C-LA1 FULSE GENEFATOR

WAFRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. Ifs within one year after delivery to the original owners and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 100 MHz .
2) The sync output channel provides TTL level signals. To avoid overdriving the TRIG input channel of some scopes, a 30 db attenuator should be placed at the input to the scope trigger channel.
3) The output pulse width is controlled by means of the front panel one turn PW contral and by the PW RANGE control. The minimum and maximum PW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

	PW min	F'W max
Fange	0.1 usec	1.0 usec
	PRF max 1 kHz	PRF max 1 kHz
Range	1.0 usec	10 usec
	FRF max 1. KHz	PRF max 1.0 kHz
Fange	10 usec	100 usec
	PRF max 1.0 kHz	FFFF max 1.0 kHz
Range	100 usec	1.0 nsec
	PRF max 1.0 kHz	FRF max 120 Hz

When the unit is triggered externally, the output pulse width equals the input trigger pulse width.
4) To obtain a stable output display the FRF control on the front panel should be set mid range. The front panel TRIG toggle switch should be in the INT position. The DELAY controls and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired FRF by rotating the PRF and FRF FINE controls.
5) The output pulse amplitude is controlled by means of the front panel one turn AMF control. To voltage control the output amplitude, remove the jumper wire between banana plugs A and B on the back panel and apply O to +10 V to connector B ($\mathrm{RIN} \geqslant 10 \mathrm{~K}$). (option).
6) An external clock may be used to control the output Ffif of the AUR unit by setting the front panel TRIG toggle
switch in the EXT position and applying a 0.2 usec (approw.) TTL level pulse to the TRIG ENC connector input. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the SYNC output.
7) The AVR-4-PW features an output impedance of the order of several ohms (rather than 50 ohms). The fallowing consequences of this feature should be noted:
a) When used to switch some semiconductor devices (eg. bipolar and VMDS power transistors), the AVR unit will yield much faster switching times than those provided by 50 ohm pulse generators.
b) The $A V R$ unit will safely operate in to load impedances in the range of 1000 ohms to an open circuit. However, the fall time may degrade for load impedances higher than 1000 ohms.
c) The AUR unit may be effectively converted to a fifty ohm output impedance generator by placing a fifty ohm $1 / 2$ watt carbon composition resistor in series with the output of the unit and the load. The maximum available load voltage will then decrease to 200 volts (from 400 valts).
d) The output switching elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced in the field following the procedure outiined in the REPAIF Section.

日) CAUTION: The output stage is protected against overload condition by a 0.5 A slow blow fuse on the main frame back panel. However, the output switching elements (SLi日T) may fail if the unit is triggered at a FRF exceeding 1 kHz or at duty cycles resulting in an average output power in excess of 16 watts. Heating and subsequent likely failure of the output stage is reduced if the following action is taken where possible:
a) FRF is kept to a minimum, ie. operate in a low FRF range when possible rather than in a high FRF range. b) Keep the output FW to a minimum.
9) The unit can be converted from 110 to $220 \mathrm{~V} 50-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused voltage selector cable connector assembly.

Fig. 2

FRONT PANEL CONTROLS

(1) ON-OFF Switch. Applies basic prime power to all stages.
(3) DELAY Control. Controls the relative delay between the reference output pulse provided at the SYNC output (4) the main output (5). This delay is variable over the range of 0 to about 1.0 usec.
(4) SYNC Output. This output precedes the main output (5) and is used to trigger the scope time base. The output is a TTL level 100 nsec (apprax.) pulse capable of driving a fifty ohm load.
(5) OUT Connector. BNC connector provides output to a 1000 ohm load.
(6) FW Control. A one turn control and 4 position range (7) switch which varies the positive output pulse width from 0.1 usec to 1.0 msec. The minimum and maximum PW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

FW min
0.1 usec

FRF max 1 KHz
Range 2

Range 3

Range 4
1.0 usec

FRF max 1 kHz
10 usec PRF max 1 kHz

100 usec
PRF max 1 kHz

FW max
1.0 usec

FRF max 1 KHz
10 usec PRF max 1 kHz

100 usec FRF max 1 KHz

$$
\begin{gathered}
1.0 \text { msec } \\
\text { FRF } \max 120 \mathrm{~Hz}
\end{gathered}
$$

(日) AMP Control. A one turn contral which varies the output pulse amplitude from o to 400 V .
(9) EXT-INT Control. With this toggle switch in the INT position, the FRF of the AVR unit is controlled via an internal clock which in turn is controlled by the FRF and PRF FINE controls. With the toggle switch in the EXT pasition, the AVR unit requires TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source.
(10) TFIG Input. The external trigger signal is applied at this input when the EXT-INT toggle 5 witch is in the EXT position. Note that the output pulse width equals the input trigger pulse width.

Fig. 3 BACK PANEL CONTROLS

(1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.5 A 5 S).
(2) To valtage contral the output pulse width, remove the jumper wire between banana plugs A and B and apply 0 to +10 V to connector E ($\mathrm{Rin}_{\mathrm{IN}} \geqslant 10 \mathrm{~K}$). (option).
(3) To valtage control the output amplitude, remove the jumper wire between banana plugs A and B and apply o to +10 V to connector B ($\mathrm{Rin}_{\mathrm{xN}}^{\mathrm{y}} 10 \mathrm{~K}$). (option).
(4) 0.5 A SE. Protects output stage against overlaad condition.

Fig. 4a

SYSTEM DESCRIFTION AND REPAIR FROCEDURE

The AUR－4－FW－C－FN consists of the following basic modules：
1）AVR－4－FW－FG pulse generator module
2）AVR－4－CL clock module
3）$+36 \mathrm{~V},+24 \mathrm{~V}$, ＋5． 8 V power supply board
4）AVR－4－PS power supply module
5）AVR－4－FW pulse width module
The modules are interconnected as shown in Fig． 4.
In the event of an instrument malfunction，it is most likely that the 0.5 A slow blow fuse or the main power fuse on the rear panel has blown．Replace if necessary．If the unit still does not function，it is most likely that some of the output switching elements（SLI日T）may have failed due to an output short circuit condition or to a high duty cycle condition．The switching elements may be accessed by removing the cover plates on the bottom side of the instrument．The cover plate is removed by removing the two 2－56 Phillips screws．NDTE：First turn off the prime power． CAUTION：Griefly ground the SL18T tabs to discharge the 400 volts power supply potential．The elements may be removed from their sockets by means of a needle nosed pliers after removing the four counter sunk $2-56$ Fhillips screws which attach the small aluminum heat sinks to the body of the instrument．The SLI日T is a selected VMOS power transistor in a TO 220 package and may be checked on a curve tracer．If defective，replacement units should be ordered directly from Avtech．When replacing the SLI日T switching elements，take care to insure that the short lead（of the three leads）is adjacent to the back of the chassis．See following fig．）． The SLI日T elements are electrically isolated from the small aluminum heat sinks but are bonded to the heat sinks using WAKEFIELD TYPE 155 HEAT SIAK ADHESIVE．If the switching elements are not defective，then the four Phillips screws on the back panel should be removed．The top cover may then be slid off and the operation of the clock and power supply modules checked．The clock module is functioning properly if：
a） 0.1 usec TTL level outputs are observed at pins 2 and 3 ．
b）The fiff of the outputs can be varied over the range of 10 Hz to 1 KHz using the PRF controls．
c）The relative delay between the pin 2 and 3 outputs can be varied by at least 1 nsec by the DELAY control．

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed．

$$
\begin{aligned}
& \text { Schoof } 04.28 .88 \\
& -E A \\
& -E W
\end{aligned}
$$

