AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS

 ENGINEERING - MANUFACTURINGP.O. BOX 265 OGDENSBURG NEW YORK 13669 (315) 472-5270

BOX 5120. STN. "F" OTTAWA, ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772 FAX: (613) 226-2802

INSTRUCTIONS

MODEL AVF-4E-FS-F-EAD-FAS1 FULSE GENEFATDF

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, eonnectors, etc.) should exceed 100 MHz .
2) With the AB mode switch in the A position, the output pulse width is controlled by the 6 position Fw range switch and the one turn FW control as follows. Note that the unit may fail if operated at duty cycles exceeding 50\%):

FW MIN
FW MAX

$1)$	1	45	10	45
2)	10	45	100	45
$3)$	100	45	1	ms
$4)$	1	ms	10	ms
$5)$	10	ms	100	ms
6)	100	ms	1	5 EC

3) With the $A B$ mode switch in the E position, the output pulse width is equal to the input trigger pulse width (TTL).
4) The output pulse amplitude is contralled by means of the front panel one turn AMF control. Note that the output amplitude deareases very slowly when the AMF control is turned CCW. This is normal and is due to the presence of very large $D C$ bypass capacitors in the output stage. The large capacitors are necessary to limit the pulse top droop at wide pulses (eg. 1 second).
5) EWA option: To digitally control the output amplitude (in 256 increments) set the rear panel switch in the EXT position and apply a parallel TTL control to FIMS 9 to 16 (FIN $9=L S B, F I N 16=M S B$) to the rear panel D connector.
6) CAUTIDN: The unit is designed to operate into a high impedance ($\geqslant 100 \mathcal{\text { O }}$) and may fail if operated into 50 ohms (or other low impedances). Alsa note that the unit is backmatched to 50 ahms in order to limit ringing and overshoot. As a result the rise time will increase as long lengths of coaxial cable are added to the output connected. Normally the cable length should not exceed about one meter.
7) CAUTIDN: The output stage is protected against overload condition by a 1.0 A slow blow fuse on the main frame back panel. However, the output switching elements may fail if the unit is triggered at a FFF exceeding 1 KHz or at duty cycles exceeding 50%. Heating and subsequent
likely failure of the output stage is reduced if the following action is taken where possible:
a) FRF is kept to a minimumg ie. operate in a low FFF range when possible rather than in a high FRF range.
b) Seep the output FW to a minimum.
8) AVF units with a serial number higher than 5600 are protected by an automatic overload protective circuit which contrals the front panel overload light. If the unit is overloaded by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output af the instrument DFF and turn the indicator light oN. The light will stay ON (i ee. output OFF) for about 5 seconds after which the instrument will attempt to turn oN (i.e. light \quad GFF for about 1 second. If the overload condition persists, the instrument will turn DFF again (i.e. light DN) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Gverload conditions may be removed by:
9) Fieducing FFF (i.E. switch to a lower range)
10) Fieducing pulse width (i.e. switch to a lower range)
11) Femaving autput laad short circuit (if any)
12) The unit can be converted from 110 to $220050-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the Fear panel fused voltage selector cable connector assembly.
13) For additional assistance, call (613) 226-5772 or Fax (61ङ) 226-2802.

Fig. 2
 FRONT PANEL CONTROLS

(1) GN-DFF Switch. Applies basic prime power to all stages.
(2) GUT Connector ENC connector provides output to a high impedance load ($\geqslant 100 k$)
(3) AmF Control. A one turn control which varies the output pulse amplitude from O to 300 V .
(4) TFIG Input. The external trigger signal is applied at this input (TTL, FW $\geqslant 50$ ns).
(5) FW Control. A one turn control and 6 position range switch which varies the output pulse width from 1 usec to 1 sec when MODE $A B$ switch is in the A position. The minimum and maximum FW for each range are as fallows Gote that the unit may fail if operated at duty cycles exceeding 50%)

FANGE
FW MIN
FWI MAX

1	1	45	10	45
2	10	45	100	45
3	100	45	1	ms
4	1	ms	10	ms
5	10	ms	100	ms
6	100	ms	1	$5 e c$

(6) AE MODE. When switch is in the A position output pulse width is contralled by FW contrals (5) while if switch is in the B position, the output pulse width equals the input trigger pulse width.
(7) AVR units with a serial number higher than 5600 are protected by an automatic overlaad protective circuit which controls the front panel overload light. If the unit is overloaded (by operating at an exceedingly high duty eycle or by operating into a short circuit), the protective circuit will turn the output of the instrument aFF and turn the indicator light ON. The light will stay $\square N(i . e . ~ o u t p u t ~ O F F)$ for about 5 seconds after which the instrument will attempt to turn ON ii.e. light \quad GF) for about 1 second. If the overlaad condition persists, the instrument will turn OFF again (i.e. light ON) for anather 5 seconds. If the overload condition has been removed, the instrument will turn on and restme normal operatiom. Qverload conditions may be rempved by:

1) Fieducing FFRF (i=e. switch to a lower range)
2) Fieducing pulse width (iae. switch to a lower range)
3) Femoving output load short circuit (if any)
Fig. 3
BACK PANEL CONTROLS

(1) FUSED CONNECTOR: VOLTAGE SELECTOF: The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.5 Amp SE).
(2) 1.OA 5B. Fuse which protects the output stage if the output duty cycle rating is exceeded.
(3) EAD D Connector = 24 FIN amphenol panel receptacle No. 57-40240. Mates with 57-50240.
(4) EAD option: To digitally control the output amplitude (in 256 increments) set the switch (4) in the EXT position and apply a parallel TTL control to FINS 9 to 16 (FIN $9=$ LSEg 16 FIN $16=$ MSB) to the D connector (4). FIN 24 is ground.

Lagic Level Valts Current

0	0 to $+0.8 V$	10 uA (max)
1	+2 to $+5 v$	10 uA (max)

The AVR-4B-FS consists of the following basic modules:

1) AUR-4-FW-F'G pulse generator module
2) AVF-4-PS power supply module
3) AVR-4-FW pulse width module

The modules are interconnected as shown in Fig. 4.
In the event of an instrument malfunction, it is most likely that the 1.0 A slow blow fuse or the main power fuse on the rear panel has blown. Fieplace if necessary. If the unit still does not function, it is most likely that some of the output switching elements (SL22T) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the cover plates on the bottom side of the instrument. The cover plate is removed by removing the two 2-56 Phillips screws. NOTE: First turn off the prime power. CAUTION: Briefly ground the SL22T tabs to discharge the 350 valts power supply potential. The elements may be removed from their sockets by means of a needle nosed pliers. The SL22T is a selected VMOS power transistor in a TO 220 package and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SL22T switching elements, take care to insure that the short lead (of the three leads) is adjacent to the back of the chassis.

Schrobf 12.12 .91

- EWA

