AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS ENGINEERING - MANUFACTURING
P.O. BOX 265 OGDENSBURG NEW YORK 13669 $13151472-5270$

BOX 5120 . STN. "F"
两 OTTAWA. ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772 FAX: (613) 226-2802 TELEX: 053-4591

INSTFUCTIONS

MODEL AVK-4E-FS-FW-F-EXA FULSE GENERATOF
S.N. :

WARFANTY

Avtech Electrosystems Ltd. warrants products of its
manufacture to be free from defects in material and
workmanship under conditions of normal use. If, within one
year after delivery to the original owner, and after prepaid
return by the original owner, this Avtech product is found to
be defective, Avtech shall at its option repair or replace
said defective item. This warranty does not apply to units
which have been dissembled, modified or subjected to
conditions exceeding the applicable specifications or
ratings. This warranty is the extent of the obligation or
liability assumed by Avtech with respect to this product and
no other warranty or guarantee is either expressed or implied.

```
Fig. I
PULSE GENERATOR TEST ARRANGEMENT
CONFIGURATION l
(for PW less than 10 msec)
```


Fig. 2
PULSE GENERATOR TEST ARRANGEMENT
CONFIGURATION 2
(for PW to 100 msec and low pulse droop)

1) This mode is recommended for output pulse widths of less than 10 msec. At wider pulse widths the pulse droop may be as high as 25%. This high droop may be avoided by using Configuration 2. To operate in Configuration 1, place the rear panel two position switch in the INT position.
2) With the $A B$ mode switch in the A position, the output pulse width is controlled by the 4 position FWrange switch and the one turn FW control. The minimum and maximum FW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

	PW min	FW max
1)	10 usec	100 usec
	FRF max 1 kHz	PRF max 0.1 kHz
2)	100 usec	1 msec
	PRF max 0.1 kHz	FRF max 10 Hz
3)	1 msec	10 msec
	PRF max 10 Hz	FRF max 1 Hz
4)	10 msec	100 msec
	PRF max 1 Hz	FRF ma: 0.1 Hz

3) With the $A B$ mode switch in the B position, the output pulse width is equal to the input trigger pulse width.
4) The output pulse amplitude is controlled by means of the front panel one turn AMF control. Note that the pulse amplitude changes with a time constant of several seconds when the control knob is adjusted. This is normal and is due to the extremely large output bypass capacitor in the output power stage.
5) The AVR-4-PS features an output impedance of the order of several ohms (rather than 50 ohms). The following consequences of this feature should be noted:
a) When used to switch some semiconductor devices (eg. bipolar and UMOS power transistors), the AVF unit will yield much faster switching times than those provided by 50 ohm pulse generators.
b) The AVfi unit will safely operate in to load impedances in the range of 50 ohms to an open circuit. However, the fall time may degrade far load impedances higher than 1000 ohms.
c) The AVF unit may be effectively converted to a fifty ohm output impedance generator by placing a fifty ohm carbon composition resistor in series with the output of the unit and the load. The maximum available load voltage will then decrease to 250 valts (from 500 volts).
d) The output switching elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced in the field following the procedure outlined in the REFAIR Section.
6) CAUTION: The output stage is protected against overload condition by a 2.0 A slow blow fuse on the main frame back panel. However, the output switching elements may fail if the unit is triggered at a FFF exceeding 1 kHz or at duty cycles resulting in an average output power in excess of 50 watts. Heating and subsequent likely failure of the output stage is reduced if the following action is taken where possible:
a) FRF is kept to a minimum, ie. operate in a low PRF range when possible rather than in a high FRF range.
b) Keep the output FW to a minimum.
7) The unit can be converted from 110 to $220 \mathrm{~V} 50-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused voltage selector cable connector assembly.
8) In this mode a user-supplied laboratory power supply is used to supply the output energy and to directly control the output pulse amplitude. This mode of operation allows the generation of very wide (eg. 100 msec) pulses having much lower droop than provided by Configuration 1. To operate in Configuration 2, place the rear panel two position switch in the EXT position and apply a 0 to +525 volt (2 to 10 amperes) DC lab power supply to the red and black female banana terminals (positive to red and negative to black). The black terminal is grounded to the chassis. With the switch in the EXT position the front panel AMP control is inactive. The output pulse amplitude will vary from 0 to +500 volts as the 1 ab power supply voltage is varied from 0 to +525 volts.

CAUTION:

1) Do not exceed +525 volts.
2) Insure that the positive potential is applied to the red banana terminal.

The following lab power supplies are typical of units acceptable for this application:

1) HF Model 6448E
2) HF Model 6483C
3) Sorensen Model DCF600-3B
4) With the $A B$ mode switch in the A position, the output pulse width is controlled by the 4 position FW range switch and the one turn FW control. The minimum and maximum FW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

FW min PW max
1)
2)

उ)
4)

With the $A E$ mode switch in the E position, the output pulse width is equal to the input trigger pulse width.
4) The output pulse amplitude is controlled by means of the externally applied lab power supply.

Fig. 2 FRONT PANEL CONTROLS

(1) ON-OFF Switch. Applies basic prime power to all stages.
(2) QUT Connector. ENC connector provides output to a 50 ohm load.
(3) AMF Control. A one turn control which varies the output pulse amplitude from 0 to 500 V when the rear panel two position switch is in the INT position Configuration 1). This control is inactive when the switch is in the EXT position (Configuration 2).
(4) TRIG Input. The external trigger signal is applied at this input. Note that the output pulse width equals the input trigger pulse width when the MODE SWITCH AB (6) is in the E position.
(5) FW Contral. A one turn contral and 4 position range switch which varies the output pulse width from 10 usec to 100 nsec when the MODE switch is in the A position. The minimum and maximum $F W$ for each range and the corresponding maximum FRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

	PW min	PW max
Fange 1	10 usec	100 usec
	PFF max 1 KHz	FRF max 0.1 KHz
Fange 2	100 usec	1 msec
	PRF max 0.1 1 HHz	FRF max 10 Hz
Range 3	1 msec	10 msec
	PFF max 10 Hz	FRF max 1 Hz
Range 4	10 msec	100 msec
	PRF max 1 Hz	FRF max 0.1 Hz

(6) AB MODE. When switch is in the A position output pulse width is controlled by FW contrals (5) while if switch is in the E position, the qutput pulse width equals the input trigger pulse width.
Fig. 3 BACK PANEL CONTROLS

(1)
(2)
(3)
(4)

FUSED CONNECTOF; VOLTAGE SELECTOR: The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (1.0 A SB).
2.0 A SB. Frotects output stage against overload condition.

INT-EXT SWITCH. To operate in Configuration 1 ffront panel AMF control active) place this switch in the INT mode. To operate in Configuration 2 (output amplitude controlled by externally applied 0 to 525 volt lab power supply) place switch in EXT position.

EXT FS-AMF CONTROL. To operate in Configuration 2 , place switch in EXT position and apply 1 to +525 volts to red banana terminal.

Fig. 4a

CAUTION: Potentials as high as 550 volts $D C$ are employed in the interior of this instrument so extreme caution must be exercised when attempting repairs. The following parts may be at high potential:
a) Pin 4 of module AVR-4B-PG-EXA (including associated leads and capacitors).
b) All pins on module AVR-4B-PS-EXA (and associated leads and capacitors).

The AVR-4-FS consists of the following basic modules:

1) AVR-4-FW-PG pulse generator module
2) AVR-4-FS power supply module
3) AVR-4-PW pulse width module

The modules are interconnected as shown in Fig. 4.
In the event of an instrument malfunction, it is most likely that the 2.0 A slow blow fuse or the main power fuse on the rear panel has blown. Replace if necessary. If the unit still does not function, it is most likely that some of the output switching elements (SL20) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the top cover plate. The cover plate is removed by removing the 4 Phillips screws on the back panel. NOTE: First turn off the prime power. CAUTION: Eriefly ground the SL20 cases to discharge the 500 volts power supply potential. The elements may be removed from their sockets after removing the four $2-56$ Fhillips screws. The SL20 is a selected VMOS power transistor in a modified TOS package and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech.
sechroff 11.03 .89

