## AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS
ENGINEERING - MANUFACTURING
P.O. BOX 265

OGDENSBURG NEW YORK 13669 (315)472.5270

BOX 5120. STN. "F" OTTAWA. ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772
FAX: (613) 226-2802
TELEX: 053-4591

## INSTRUCTIONS

## WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT


1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 100 MHz .
2) The sync output channel provides TTL level signals. To avoid overdriving the TRIG input channel of some scopes, a 30 db attenuator should be placed at the irput to the scope trigger channel. The TRIG output precedes the main output when the front panel LEAD-LAG switch is in the LEAD position. The TRIG output lags the main output when the switch is in the LAG position.

The DELAY control controls the relative delay between the reference output pulse provided at the TRIG output and the main output. This delay is variable over the range of 0.1 usec to 100 usec.

MIN
MAX

| Fange 1 | 0.1 usec | 1.0 usec |
| :--- | :--- | :--- |
| Fange 2 | 1.0 usec | 10 usec |
| Range 3 | 10 usec | 100 usec |

3) The output pulse width is controlled by means of the front panel one turn FW control and by the PW RANGE control. The minimum and maximum FW for each range and the corresponding maximum FRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

|  | FW min | PW max |
| :---: | :---: | :---: |
| Range 1 | 0.1 usec | 1.0 usec |
|  | FRF max 1 kHz | FFiF max 1 kHz |
| Range 2 | 1.0 usec | 10 usec |
|  | FRF max 1 KHz | PRF max 500 Hz |
| Range 3 | 10 usec | 100 usec |
|  | FRF max 500 Hz | PRF max 50 Hz |

To voltage control the output pulse width within each range, set the rear panel switch in the EXT position and apply $O$ to +10 volts between terminal $A$ and ground $\left(R_{i n}\right.$ Y 10k). (option).
4) To obtain a stable output display the FFF control on the front panel should be set mid range. The front panel TRIG toggle switch should be in the INT position. The DELAY controls and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired FFFF by rotating the FFF and FRF FINE controls.
5) The output pulse amplitude is controlled by means of the front panel one turn AMF control. To voltage control the output amplitude, set the rear panel switch in the EXT pasition and apply o to +10 volts between terminal A and ground (RxN $\geqslant 10 k$ ). (option).
6) An external clack may be used to control the output fRF of the AVF unit by setting the front panel TFIG toggle switch in the EXT position and applying a 0.2 usec (approm.) TTL level pulse to the TRIG BNC connector input. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the TFIG output.
7) The AVR-S-FW features an output impedance of the order of several ohms (rather than 50 ohms). The following consequences of this feature should be noted:
a) When used to switch some semiconductor devices (eg. bipolar and UMDS power transistors), the AVF unit will yield much faster switching times than those provided by 50 ohm pulse generators.
b) The AVF unit will safely operate in to lad impedances in the range of 50 ohms to an open circuit. However, the fall time may degrade for load impedances higher than fifty ohms.
c) The AVR unit may be effectively canverted ta a fifty ohm output impedance generator by placing a fifty ohm carbon composition resistor in series with the output of the unit and the load. The maximum available load voltage will then decrease to 250 valts (from 500 valts).
d) The output switching elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced in the field following the procedure outlined in the REFAIF Section.
8) CAUTION: The output stage is protected against overload condition by a 1.0 A slow blow fuse on the main frame back panel. However, the output switching elements may fail if the unit is triggered at a PRF exceeding 1 kHz or at duty cycles resulting in an average output power in excess of 50 watts. Heating and subsequent likely failure of the output stage is reduced if the following action is taken where possible:
a) PRF is kept to a minimum, i.e. operate in a low PRF range when possible rather than in a high Fiff range.
b) Keep the output FW to a minimum.
9) The unit can be converted from 110 to $220 \mathrm{~V} 50-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused voltage selector cable connector assembly.
Fig. 2
FRONT PANEL CONTROLS

(1) QN-DFF Switch. Applies basic prime power to all stages.
(2) PRF Control. Varies FRF from 0.1 Hz to 1 kHz as follows:

| Range 1 | 5 | Hz | 50 Hz |
| :--- | :--- | :--- | :--- | :--- |
| Range 2 | 20 Hz | 200 Hz |  |
| Range 3 | 100 Hz | 1 | KHz |

DELAY Control. Controls the relative delay between the reference cutput pulse provided at the TRIG output (4) the main output (5). This delay is variable over the range of 0.1 to about 100 usec. Delay LEADS or LAGS depending on the position of the LEAD-LAG switch.

MIN
MAX

| Range 1 | 0.1 usec | 1.0 usec |
| :--- | :--- | :--- |
| Range 2 | 1.0 usec | 10 usec |
| Range 3 | 10 usec | 100 usec |

TRIG Dutput. This output is used to trigger the scope time base. The output is a TTL level 100 nsec (approx.) pulse capable of driving a fifty ohm load. This output precedes the output at (5) if the two position LEAD-LAG switch is in the LEAD position. This output follows the output at (5) if the switch is in the LAG position. The delay range is variable from 0.1 usec to 100 usec. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.

QUT Connector. ENC connector provides output to a 50 ohm load.

EW Control. A one turn control and 3 position range switch which varies the positive output pulse width from 0.1 usec to 100 usec. The minimum and maximum PW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

FW min PW max

| Range 1 | O. 1 user | 1.0 usec |
| :---: | :---: | :---: |
|  | FRF max 1 kHz | PRF max 1 |
| Range 2 | 1.0 usec | 10 usec |
|  | FRF max 1 kHz | FRF max 500 Hz |
| Range 3 | 10 usec | 100 usec |
|  | PRF max 500 Hz | PRF max 50 Hz |

(8) AMF Control. A one turn control which varies the output pulse amplitude from 0 to 500 V .
(9) EXT-INT Control. With this toggle switch in the INT position, the PRF of the AUR unit is controlled via an internal clock which in turn is contralled by the PRF control. With the toggle switch in the EXT position, the AVR unit requires a 0.2 usec TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source.

Fig. 3 BACK PANEL CONTROLS

(1) FUSED CONNECTOF, VOLTAGE SELECTOF. The detachable power cord is connected at this paint. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.5 A SE).
(2) $1 . O A$ SE. Fuse which protects the output stage if the output duty cycle rating is exceeded.
(3) EA. To voltage control the output amplitude, set the switch in the EXT position and apply 0 to +10 volts between terminal $A$ and ground (Fixw $>10 k$ ). (option).
(4) EW. To valtage contral the output pulse width, set the switch in the EXT position and apply o to +10 volts between terminal $A$ and graund $\left(R_{\text {IN }} \geqslant 10 k\right)$. (option).
(5) [95. To apply a DC offset to the output pulse, apply the desired DC offset potential to the 05 solder terminals (Vmax \& +50 volts. Imax $\leqslant+200 \mathrm{~mA}$ ). (option)



CAUTION: Fotentials as high as 600 volts DC are employed in the interior of this instrument so extreme caution must be exercised when attempting repairs. The fallowing parts may be at high potential:
a) Pin 2 of module AVR-5B-FG (including associated leads and capacitors and Part No. SLRS-A).
b) Pin 1 on module AVK-SE-FS (and associated leads and Capacitors).

The AVR-5B-F~C consists of the following basic modules:

1) AVR-5E-PW-FG pulse generator module
2) AVR-5B-PS power supply module
3) AVR-5日-FW pulse width module
4) AVR-5B-CL clack module
5) $+36,+40,+24$ volt power supplies

The modules are interconnected as shown in Fig. 4.
In the event of an instrument malfunction, it is most likely that the 1.0 A slow blow fuse or the main power fuse on the rear panel has blown. Replace if necessary. If the unit still does not function, it is most likely that some of the output switching elements (IRFAGSO) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the top cover plate. The cover plate is removed by removing the 4 Fhillips screws on the back panel. NDTE: First turn off the prime power. CAUTION: Tharoughly ground the IRFAGSO cases to discharge the 500 valts power supply potential. The IRFAGSO may be removed from the mounting bracket and checked on a curve tracer and replaced if necessary. AVTECH Fart No. SLFS-A consists of the two transistors mounted on the bracket with insulating washers. 1 $k$ resistors and output cable.
08.31 .90

