AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS ENGINEERING - MANUFACTURING
P.O. BOX 265 OGDENSBURG NEW YORK

13669 (315)472-5270

BOX 5120. STN. "F" OTTAWA. ONTARIO

INSTRUCTIONS

MODEL AVR-5E-FW-C-SNLI PULSE GENERATOR
S.N. :

WAFFANTY

Avtech Electrosystems Ltd. warrants products of its
manufacture to be free from defects in material and
workmanship under conditions of normal use. If, within one
year after delivery to the original owner, and after prepaid
return by the original owner, this Avtech product is found to
be defective, Avtech shall at its option repair or replace
said defective item. This warranty does not apply to units
which have been dissembled, modified or subjected to
conditions exceeding the applicable specifications or
ratings. This warranty is the extent of the obligation or
liability assumed by Avtech with respect to this product and
mo other warranty or guarantee is either expressed or implied.

Fig. 1

 PULSE GENERATOR TEST ARRANGEMENT

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuatorsy cables. connectors. etc.) should exceed 100 MHz.
2) The sync output channel provides TTL level signals. To avaid overdriving the TRIG input channel of some scopes, a 30 db attenuator should be placed at the input to the scope trigger channel. The TFIG output precedes the main gutput when the front panel LEAD-LAG switch is in the LEAD position. The TRIG output lags the main output when the switch is in the LAG position.

The DELAY control controls the relative delay between the reference output pulse provided at the TRIG output and the main output. This delay is variable over the range of 0.1 usec to 100 usec.

	MIN	MAX
Fange 1	0.1 usec	1.0 usec
Range 2	1.0 usec	10 usec
Range 3	10 usec	100 usec

3) The output pulse width is contralled by means of the front panel one turn FW contral and by the FW RANGE control. The minimum and maximum FW for each range and the corresponding maximum FFF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

FW min \quad FiN max

Range 1	0.1 usec	1.0 usec
	FFF max 1 KHz	FFF max 1
Range 2	1.0 usec	FHz
	FRF max 1 kHz	PRF max 500 Hz
Range 3	10 usec	100 usec
	FRF max 500 Hz	FFF max 50 Hz

To voltage control the output pulse width within each range, set the rear panel switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Fin \rangle 10k). (option).
4) Ta obtain a stable output display the FFF control on the front panel should be set mid range. The front panel TRIG toggle switch should be in the INT pasition. The DELAY contrals and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired FFF by rotating the FRFF and FFF FINE controls.
5) The output pulse amplitude is controlled by means of the front panel one turn AMF contral. To voltage control the output amplitude, set the rear panel switch in the EXT pasition and apply 0 to +10 volts between terminal A and ground (RxN ? 10K). (option).
6) An external clock may be used to control the output FFF of the AVF unit by setting the front panel TRIG toggle switch in the EXT position and applying a 0. 2 usec (approx.) TTL level pulse ta the TFIG BNC cannectar input. For operation in this modey the scape time base must also be triggered by the external clock rather than from the TRIG output.
7) The AVF-5-FW features an output impedance of the order of several ohms (rather than 50 ohms). The following consequences of this feature should be noted:
a) When used to switch some semiconductor devices (eg. bipolar and VMOS power transistors) the AVR unit will yield much faster switching times than those provided by 50 ohm pulse generators.
b) The AUR unit will safely operate in to load impedances in the range of 50 ohms to an open circuit. However, the fall time may degrade for load impedances higher than fifty ohms.
c) The AVF unit may be effectively converted to a fifty ohm autput impedance generator by placing a fifty ohm carbon composition resistor in series with the output of the unit and the laad. The maximum available load voltage will then decrease to 250 volts (from 500 volts).
d) The output switching elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced ir the field following the procedure outlined in the REFAIF Sertion.

日) CAUTION: The output stage is protected against overload condition by a 1.0 A slow blow fuse on the main frame back panel. However, the output switching elements may fail if the unit is triggered at a PFF exceeding ikiHz or at duty cycles resulting in an average output power in excess of 50 watts. Heating and subsequent likely failure of the output stage is reduced if the following action is taken where possible:
a) FRF is kept to a minimum, i.e. operate in a low FRF range when possible rather than in a high FRF range. b) Keep the output FW to a minimum.
9) The unit can be converted from 110 to $220 \mathrm{~V} 50-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused voltage selector cable connector assembly.
10) SNLI Option: For single pulse manual operation, set the front panel INT-EXT-MAN switch in the MAN position and push the SINGLE PULSE button.
iig. 2 FRONT PANEL CONTROLS

(3) DELAY Control. Contrals the relative delay between the reference output pulse provided at the TRIG output (4) the main output (5). This delay is variable over the range of 0.1 ta about 100 usec. Delay LEADS or LAGS depending on the position of the LEAD-LAG switch.

MIN
MAX

Fange 1	0.1 usec	1.0 usec
Fange 2	1.0 usec	10 usec
Fange 3	10 usec	100 usec

(4) TFIG Dutput. This output is used to trigger the scope time base. The output is a TTL level 100 nsec (appron.) pulse capable of driving a fifty ohm load. This output precedes the output at (5) if the two position LEAD-LAG switch is in the LEAD position. This output follows the output at (5) if the switch is in the LAG position. The delay range is variable from 0.1 usec to 100 usec. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.
(5) GUT Connector. ENC connector provides output to a 50 ohm 1 口ad.
(6) PW Control. A one turn control and 3 position range (7) switch which varies the positive output pulse width from 0.1 usec to 100 usec. The minimum and maximum FW for each range and the corresponding maximum FFF are as follows: Note that the unit may fail if operated at duty cycles exceeding the above.

PW min
FW max
Range 1

Range 2
1.0 usec

FFF max 1 KHz
Fiange 3
10 usec
FRF max 500 Hz
1.0 usec

PRF max 1 kHz
10 usec PRF max 500 Hz

100 usec FRF max 50 Hz
(8) AMF Control. A one turn control which varies the output pulse amplitude from 0 to 500 V.
(9) EXT-INT Control. With this toggle switch in the INT position, the PRF of the AVF unit is controlied via an internal clock which in turn is controlled by the FRF control. With the toggle switch in the EXT position, the AVR unit requires a 0.2 usec TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source.
(10) SINGLE PULSE. For single pulse manual operation, set the front panel INT-EXT-MAN switch in the MAN position and push the SINGLE PULSE button.

Fig. 3
BACK PANEL CONTROLS

(1) EUSED CONNECTOF, VOLTAGE SELECTOF. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.5 A SE).
(2) 1.0A SE. Fuse which protects the output stage if the output duty cycle rating is exceeded.
(3) EA. To voltage control the output amplitude, set the switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Fixn $>10 k$). (option).
(4) EW. To voltage control the output pulse width, set the switch in the EXT position and apply o to +10 volts between terminal A and ground ($\mathrm{Rin}_{\text {in }}$ > 1OK). (option).
(5) OS. To apply a DC offset to the output pulse, apply the desired DC offset potential to the 05 solder terminals ($V_{\text {max }} \leqslant \pm 50$ volts, $I_{\text {max }} \leqslant \pm 200 \mathrm{~mA}$). (option)

TIP50

CAUTION: Potentials as high as 600 volts DC are employed in the interior of this instrument so extreme caution must be exercised when attempting repairs. The following parts may be at high potential:
a) Pin 2 of module AVR-5B-FG (including associated leads and capacitors and Part No. SLRS-A).
b) Pin 1 an module AVF-SE-FS (and associated leads and capacitars).

The AVR-5B-F-C consists of the following basic modules:

1) AVR-5B-PW-FG pulse generator module
2) AVR-5B-FS power supply module
3) AVR-5B-FW pulse width module
4) AVR-5B-CL clock module
5) $+36,+40,+24$ valt power supplies

The modules are interconnected as shown in Fig. 4.
In the event of an instrument malfunction, it is most likely that the 1.0 A slow blow fuse or the main power fuse on the rear panel has blown. Replace if necessary. If the unit still does not function, it is most likely that some of the output switching elements (IFFAGSO) may have failed due to an output short circuit candition or to a high duty cycle condition. The switching elements may be accessed by removing the top cover plate. The cover plate is removed by removing the 4 Fhillips screws on the back panel. NOTE: First turn off the prime power. CAUTION: Thoroughly ground the IRFAG50 cases to discharge the 500 volts power supply potential. The IFFAGSO may be removed from the mounting bracket and checked on a curve tracer and replaced if necessary. AVTECH Fiart. No. SLFE-A consists of the two transistors mounted on the bracket with insulating washers, 1 k resistors and output cable.

$$
08.31 .90
$$

