AVTECH ELECTROSYSTEMS LTD.
 NANOSECOND WAVEFORM ELECTRONICS ENGINEERING - MANUFACTURING

P.O. BOX 265 OGDENSBURG NEW YORK 13669
$13151472-5270$

BOX 5120 . STN. "F"
酉 OTTAWA. ONTARIO CANADA K2C 3 H 4 TEL: (613) 226-5772 FAX: (613) 226-2802 TELEX: 053-4591

INSTRUCTIONS

MODEL AUR-5B-FW-PS-N-RIA FULSE GENERATOR
S. N.

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators: cables, connectors, etc.) should exceed 100 mHz .
2) With the AE mode switch in the A position, the output pulse width is controlled by the 3 position FWrange switch and the one turn FW control. The minimum and maximum FW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

FW min
FW max
1)
FRF max 1 kHz
1.0 usec

FRF max 1 kHz
FFF max 1 kHz
2)
3)

PRF $\max 1 \mathrm{KHz}$
10 usec
PRF max 500 Hz
10 usec
100 usec
PRF max 500 Hz
PFF max 50 Hz
3) With the $A B$ made switch in the B pasition, the output pulse width is equal to the input trigger pulse width.
4) The output pulse amplitude is controlled by means of the front panel one turn AMF control. CAUTION: The AMP control should be rotated slowly fparticularly when rotating CCW) so as to avaid over-stressing of the output stage.
5) The AVF-5-F'S features an output impedance of the order of several ohms (rather than 50 ohms). The following consequences of this feature should be noted:
a) When used to switch same semiconductor devices (eg. bipolar and UMDS power transistors), the AVR unit will yield much faster switching times than those provided by 50 ohm pulse generators.
b) The output switching elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced in the field following the procedure outlined in the REFAIR Section.
6) CAUTION: The output stage is protected against overload condition by a 1.0 A slow blow fuse on the main frame back panel. However, the output switching elements may fail if the unit is triggered at a FFF exceeding 1 kHz or at duty cycles resulting in an average output power in excess of 16 watts. Heating and subsequent likely failure of the output stage is reduced if the following action is taken where possible:
a) PRF is kept to a minimum, ie. operate in a low PRF range when possible rather than in a high PRF range. b) Keep the output FW to a minimum.
7) The unit can be converted from 110 to $220 \mathrm{~V} 50-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused voltage selector cable connector assembly.

Fig. 2 FRONT PANEL CONTROLS

(1) DN-DFF Switch. Applies basic prime power to all stages.
(2) GUT Connector. ENE connector provides output to a 50 ohm load.

AMF Control. A one turn control which varies the output pulse amplitude from 0 to 500 V .
(4) TRIG Input. The external trigger signal is applied at this input. Note that the output pulse width equals the input trigger pulse width.

PW Control. A one turn control and 3 position range switch which varies the output pulse width from 0. 1 usec to 100 usec. The minimum and maximum PW for each fange and the corresponding maximum FRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

	PW min	FW max
Fange 1	O. 1 usec	1.0 usec
	PRF max 1 KHz	PRF max 1 KHz
Range 2	1.0 user	10 usec
	PRF max 1 kHz	PRF max 500 Hz
Fange 3	10 usec	100 usec
	FRF max 500 Hz	FRF max 50 Hz

(6) AB MODE. When switch is in the A position output pulse width is controlled by PW controls (5) while if switch is in the B positiong the output pulse width equals the input trigger pulse width.
Fig. 3 BACK PANEL CONTROLS
(2)

(1)
(1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.5 A 5 S).
(2) 1.0 A SE. Protects output stage against overload condition.

Fig. 4 a

CAUTION: Fotentials as high as bOO volts DC are employed in the interior of this instrument so extreme caution must be exercised when attempting repairs. The following parts may be at high potential:
a) Pin 2 of module $A V R-5 B-P G$ (including associated leads and capacitors and Fart No. SLRS-A).
b) Fin 1 on module AUR-5H-PS (and associated leads and capacitors).

The AVR-5B-F'S consists of the following basic modules:

1) AVR-5B-PW-PG pulse generator module
2) AVR-5B-FS power supply madule
3) AVR-5B-PW pulse width madule

The modules are interconnected as shown in Fig. 4.
In the event of an instrument malfunction, it is most likely that the 1.0 A slow blow fuse or the main power fuse on the rear panel has blown. Replace if necessary. If the unit still does not function, it is most likely that some of the output switching elements (IRFAGS0) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the top cover plate. The cover plate is removed by removing the 4 Phillips screws on the back panel. NOTE: First turn off the prime power. CAUTION: Thoroughly ground the IRFAG50 cases to discharge the 500 volts power supply potential. The IRFAGSO may be removed from the mounting bracket and checked on a curve tracer and replaced if necessary. AVTECH Fart No. SLRS-A consists of the two transistors mounted on the bracket with insulating washers, 1 k resistors and output cable.

Schrobf 06.07 .90

