AVTECH ELECTROSYSTEMS
LTD.
NANOSECOND WAVEFORM ELECTRONICS
P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669.0265

TEL: (315) 472-5270
FAX: (613) 226-2802

敢 BOX 5120 STN.F OTTAWA, ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772 FAX: (613) 226.2802

INSTRUCTIONS

MODEL AUR-5B-PW-PS-UNM1 FLLSE GENERATOR
S.N. =

WARFANTY

Avtech Electrosystems Ltd. warrants products of its
manufacture to be free from defects in material and
workmanship under conditions of normal use. If, within one
year after delivery to the original owner, and after prepaid
return by the original owner, this Avtech product is found to
be defective, Avtech shall at its option repair or replace
said defective item. This warranty does not apply to units
which have been dissembled, modified or subjected to
conditions exceeding the applicable specifications or
ratings. This warranty is the extent of the obligation or
liability assumed by Avtech with respect to this product and
no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERXTOR TEST ARRMGEMENT

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed 100 MHz .
2) With the AB mode switch in the A position, the output pulse width is controlled by the 4 position PW range switch and the one turn PW control. The minimum and maximum FW for each range and the corresponding maximum FRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.
3)
4)
5)
6)

FW min
0.145

FRF max 10 kHz
0.345

FFF max 10 kHz
3.0 us

PRF max 10 kHz

SO 45
FFF max 1 kHz

PW max
0.3 us

FRF max 10 kHz
3.045

FFiF max 10 kHz
$30 \quad 45$
PRF max 1 kHz

30045
PFF max 100 Hz
3) With the $A B$ mode switch in the B position, the output pulse width is equal to the input trigger pulse width.
4) The output pulse amplitude is controlled by means of the front panel ten turn AMP control. CAUTIDN: The AMP contral should be rotated slowly (particularly when rotating CCW) sa as to avoid over-stressing of the output stage.
5) The AVR-S-FS features an output impedance of the order of several ohms (rather than 50 ohms). The following consequences of this feature should be noted:
a) When used to switch some semiconductor devices (egbipolar and UMOS power transistors), the AVR unit will yield much faster switching times than those provided by 50 ohm pulse generators.
b) The output switching elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced in the field following the procedure outlined in the REFAIF: Section.
6) The rise (and fall time) to a capacitive load may be increased by placing a low value resistor 50 to 500 Ohms in series with the output line. Ringing and overshoot will be significantly reduced if a 50 series resistor is placed near the OUT connector.
7) CAUTION: The output stage is protected against overload condition by a 2.0 A slow blow fuse on the main frame back panel. However, the output switching elements may fail if the unit is triggered at a PRF exceeding 10 kHz or at duty cycles resulting in an average output power in excess of 50 watts. Heating and subsequent likely failure of the output stage is reduced if the following action is taken where possible:
a) PRF is kept to a minimum, ie. operate in a low PRF range when possible rather than in a high FRF range. b) Keep the output PW to a minimum.
8) DVERLDAD INDICATDR. AVR-5 units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument GFF and turn the indicator light ON. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn $O N$ (i.e. light \quad FFF) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light $O N$) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:

1) Feducing PFF (i.e. switch to a lower range)
2) Reducing pulse width (i.e. switch to a lower range)
3) Removing output load short circuit (if any)
4) The unit can be converted from 110 to $220050-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused voltage selector cable connector assembly.

For additional assistance:
Tel: (613) 226-5772
Fax: (613) 226-2802

Fig. 2 FRONT PANEL CONTPOLS

(1) $\quad \mathrm{N}-\mathrm{DFF}$ Switch. Applies basic prime power to all stages.
(2) GUT Connector. N connector provides output ta a 50 ohm 1 oad.
(3) AMP Control. A ten turn control which varies the output pulse amplitude from 0 to 500 V .
(4) TRIG Input. The external trigger signal is applied at this input (TTL).
(5) FW Control. A one turn control and 4 position range switch which varies the output pulse width from 0.1 us to 300 us. The minimum and maximum FW for each range and the corresponding maximum FRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

(6) AB MODE. When switch is in the A pasition output pulse width is controlled by FW controls (5) while if switch is in the B position; the output pulse width equals the input trigger pulse width.
(7) QVEFLQAD INDICATOF: AVR-7 units with a serial number higher than 5600 are protected by an automatic overlaad protective circuit which controls the front panel overload 1 ight. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument $\square F F$ and turn the indicator light ON. The light will stay ON (i.e. output OFF) for about 5 secands after which the instrument will attempt to turn ON (i.e. light OFF) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light $\square N$) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Gverload conditions may be removed by:

1) Feducing PRF (i.e. switch to a lower range)
2) Reducing pulse width (i.e. switch to a lower range)
3) Removing output laad short circuit (if any)

Fig. 3 BACE PANEL CONTROLS
(2)

(1) FUSED CONNECTOR, VOLTAGE SELECTOF. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.5 A 5 S).
(2) 2.O A SB. Frotects output stage against overload condition.

CAUTION: Fotentials as high as 550 volts DC are employed in the interior of this instrument so extreme caution must be exercised when attempting repairs. The following parts may be at high potential:
a) Fin 2 of module AVR-5B-PG (including associated leads and capacitors and Part No. SLRS-A).
b) Pin 1 on module AVR-5B-PS (and associated leads and capacitors).

The AUR-5B-PS consists of the following basic modules:

1) AVR-5B-PW-PG pulse generator module
2) AVR-5B-PS power supply module
3) AVR-5B-PW pulse width module

The modules are interconnected as shown in Fig. 4.
In the event of an instrument malfunction, it is most likely that the 2.0 A slow blow fuse or the main power fuse on the rear panel has blown. Replace if necessary. If the unit still does not function, it is most likely that some of the output switching elements (IRFAGSO) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the top cover plate. The cover plate is removed by removing the 4 Phillips screws on the back panel. NDTE: First turn off the prime power. CAUTION: Thoroughly ground the IRFAG50 cases to discharge the 500 volts power supply potential. The IRFAGSO may be removed from the mounting bracket and checked on a curve tracer and replaced if necessary. AVTECH Fart No. SLR5-A consists of the two transistors mounted on the bracket with insulating washers, 1 K resistors and output cable.

$$
04.16 .93
$$

