AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS ENGINEERING - MANUFACTURING

INSTRUCTIONS

WARFANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original ownerg and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1
PUISE GENERATOR TEST ARRANGEMENT

$50-60 \mathrm{~Hz}$

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (atteruators; cables, connectors, etc.) should exceed 100 MHz .
2) The sync output channel provides TTL level signals. To avaid overdriving the TRIG input channel of some scopes, a so db attenuator should be placed at the input to the scope trigger channel. The TFiIG output precedes the main output when the front panel LEAD-LAG switch is in the LEAD position. The TRIG output lags the main output when the switch is in the LAG position.

The DELAY contral controls the relative delay between the reference output pulse provided at the TFIG output and the main output. This delay is variable over the range of 0.1 usec to 100 usec.

MIN MAX

Fiange 1	0.1 usec	1.0 usec
Fiange 2	1.0 usec	10 usec
Fange 3	10 usec	100 usec

3) The output pulse width is contralled by means of the front panel one turn PW control and by the FW FiANGE contral. The minimum and maximum FW for each range and the corresponding maximum FRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

FW min
F'W max

Fiange 1

Fange 2

Finge 3
0. 1 Lsec FiFiF max 10 kHz
1.0 usec FFF max 5 KHz

10 usec
FRF max 500 Hz
1.0 usec

FFF max 5 kHz

10 usec
FFiF max 500 Hz
100 usec
FiKF max 50 Hz

To voltage control the output pulse width within each range, set the rear panel switch in the EXT position and apply 0 to +10 volts between terminal A and ground ($F_{i n}$ > 10K). (option).
4) To obtain a stable output display the FFF control on the front panel should be set mid range. The front panel TRIG toggle switch shauld be in the INT position. The DELAY controls and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired FRF by rotating the PRF and FRF FINE controls.
5) The output pulse amplitude is controlled by means of the front panel ten turn AMF contral. To voltage control the output amplitude, set the rear panel switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Kine > 1OK). (option).
b) The output polarity is controlled by the two position polarity switch. CAUTION: To avoid stressing of the output stage it is recammended that the amplitude be reduced to near zero before changing the output polarity.
7) An external clack may be used to control the output fRF of the $A V R$ unit by setting the front panel TFIG toggle switch in the EXT position and applying a 0.2 usec (approw.) TTL level pulse to the TFIG BNC connector input. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the TRIG output.
8) For single pulse manual operation, set the front panel INT-EXT-MAN switch in the MAN position and push the SINGLE FLLSE button.
9) The AVF-7E-C features an output impedance of the order of several ohms (rather than 50 ohms). The following consequences of this feature should be noted:
a) When used to switch some semiconductor devices (eg. bipolar and VMOS power transistors), the AVR unit will yield much faster switching times than those provided by 50 ohm pulse generators.
b) The $A \cup R$ unit will safely operate in to load impedances in the range of 50 ohms to an open circuit. However, the fall time may degrade for laad impedances higher than fifty ohms.
c) The AVR unit may be effectively converted to a fifty ohm output impedance generator by placing a fifty ohm carbon composition resistor in series with the output of the unit and the load. The maximum available load voltage will then decrease to 350 volts (from 700 valts).
d) The output switching elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced in the field following the procedure autlined in the FiEFAIF Section.
10) CAUTION: The output stage is protected against averload condition by a 2.0 A slow blow fuse on the main frame back panel. However, the output switching elements may fail if the unit is triggered at a FFF exceeding 1 kHz or at duty cycles resulting in an average output power in excess of 50 watts. Heating and subsequent likely failure of the output stage is reduced if the following action is taken where possible:
a) FRF is kept to a minimum, i=e. operate in a low FRF range when possible rather than in a high FRF range. b) Keep the output PW to a minimum.
11) DVEFLDAD INDICATOF: AVF-7-C units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument GFF and turn the indicator light ON. The light will stay ON (i.e. output DFF) for about 5 seconds after which the instrument will attempt to turn $O N$ (ine. light $D F F$) for about 1 second. If the overload condition persists, the instrument will turn DFF again (ine. light ON) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:

1) Fieducing FFF (i.e. switch to a lower range)
2) Reducing pulse width (i.e. switch to a lower range)
3) Femoving output load short circuit (if any)
4) The unit can be converted from 110 to $220 \mathrm{~V} 50-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused voltage selector cable connector assembly.

Fig. 2
FRONT PANEL CONTROLS

(1) ON-OFF Switch. Applies basic prime power to all stages.
(5) QUT Connectors. N cannectors provide output to a 50 ohm load.
(6) FW Control. A one turn control and 3 position range

FRF Control. Varies FRF from 0.1 Hz to 10 KHz as follows:

Fange 1	5	Hz	50	Hz
Fiange	2	20	Hz	200
Fange				
Fang	100	Hz	1	KHz
Range 4	1	KHz	10	KHz

(3) DELAY Control. Controls the relative delay between the reference output pulse provided at the TFIG output (4) the main output (5). This delay is variable over the range of 0.1 to about 100 usec. Delay LEADS or LAGS depending on the position of the LEAD-LAG switch.

$$
\operatorname{MIN} \quad \operatorname{MAX}
$$

Fange 1	0.1 usec	1.0 usec
Fiange 2	1.0 usec	10 usec
Fiange 3	10 usec	100 usec

SYNC Dutput. This output is used to trigger the scope time base. The output is a TTL level 100 nsec (apprax.) pulse capable of driving a fifty ohm load. This output precedes the output at (5) if the two position LEAD-LAG switch is in the LEAD position. This output follows the output at (5) if the switch is in the LAG position. The delay range is variable from 0.1 usec to 100 usec. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position. switch which varies the positive output pulse width from 0.1 usec to 100 usec. The minimum and maximum FW for each range and the corresponding maximum FRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

FW min

Fiange 1	0.1 usec
	FFF max 10 kHz
Fiange 2	1.0 usec
	FRF max 5 kHz
Range 3	10 usec
	FFF max 500 Hz

FW max
1.0 usec

FRF max 5 kHz
10 usec
PRF max 500 Hz
100 usec
PRF max 50 Hz
(8) AMF Control. A ten turn control which varies the output pulse amplitude from 0 to 700 V .
(9) EXT-INT-MAN Control. With this toggle switch in the INT position, the FFF of the AVR unit is controlled via an internal clock which in turn is controlled by the FRF control. With the toggle switch in the EXT position, the AVF unit requires a g. 2 usec TTL level pulse applied at the TRIG input in order to trigger the output stages. In additiong in this modeg the scope time base must be triggered by the external trigger source. With the MODE A-E switch in the A position the output pulse width is cantralled by the FW contrals. With the MODE A-B switch in the E positiong the output pulse width equals the input trigger pulse width. For single pulse operation, set the INT-EXT-MAN switch in the MAN position.
(10) SINGLE FULSE For single pulse manual operation, set the front panel INT-EXT-MAN switch in the MAN pasition and push the SINGLE FULSE button.
(13)

MODE A-E. For output pulse width control via the FW controls, the MODE switch should be in the A position. When triggering via an externally applied TTL level trigger pulse; the output pulse width equals the input trigger pulse width if the MODE switch is in the B pasition.

FQLARITY. The autput pulse polarity is contralled by this two position switch. CAUTION: Ta avoid stressing the output stage, it is recommended that the output amplitude be reduced to near zero before changing the output polarity.

QVERLDAD INDICATOF: AVF-7-C units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a shart circuit), the protective circuit will turn the output of the instrument \quad aFF and turn the indicator light $\quad \mathrm{N} . \quad$ The light will stay $O N$ (i.e. output DFF) for about 5 seconds after which the instrument will attempt ta turn $\square N$ (i=e. light $O F F$) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light ON) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overlaad conditions may be removed by:

1) Fieducing FFF (i.e. switch to a lower range)
2) Feducing pulse width (i.e. switch to a lower range)
B) Femoving output laad short circuit (if any)

Fig. 3 BACK PANEI CONTROLS

(1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (1.0 A SB).
(2)
(3) EA. To voltage control the output amplitude, set the switch in the EXT position and apply 0 to +10 volts between terminal A and ground ($\mathrm{Rin}_{\mathrm{IN}}>10 \mathrm{~K}$). (option).
(4) EW. To voltage control the output pulse width, set the switch in the EXT position and apply 0 to +10 volts between terminal A and ground (Fim > lok). (option).

CAUTION: Fotentials as high as 750 volts $D C$ are employed in the interior of this instrument so extreme caution must be exercised when attempting repairs. The following parts may be at high potential:
a) Fart No. SLF7-A-F and Fart No. SLF7-A-N 《and associated leads and capacitors).
b) Fins 1 and 2 on module AVR-7B-FS (and associated leads and capacitors).

The AVR-7B-F-C consists of the following basic modules:

1) AVF-7B-PG pulse generator modules (F and N)
2) AVR-7E-FS power supply module
3) AVF-7E-FW pulse width module
4) AVR-7B-CL clock module
5) $+36,+49,+24$ volt power supplies

The modules are interconnected as shown in Fig. 4 .
In the event of an instrument malfunction, it is most likely that the 2.0 A slow blow fuse or the main power fuse on the rear panel has blown. Replace if necessary. If the unit still does not function, it is most likely that some of the output switching elements (IRFAGSO) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the top cover plate. The cover plate is removed by removing the 4 Fhillips screws on the back panel. NOTE: First turn off the prime power. CAUTION: Thoroughly ground the IFFAG50 cases to discharge the 750 volts power supply potential. The IFFAGSO may be removed from the mounting bracket and checked on a curve tracer and replaced if necessary. AVTECH Fiart No. SLF7-A consists of the two transistors mounted on the bracket with insulating washers, 1 K resistors and output cable.
S.chrobf
04.12 .91 Edition A
-EW
-EA

