AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS

 ENGINEERING - MANUFACTURINGP.O. BOX 265 OGDENSBURG NEW YORK 13669 (315)472-5270

BOX 5120. STN. "F" OTTAWA. ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772
FAX: (613) 226-2802
TELEX: 053-4591

INSTRUCTIONS

MODEL AVR-A-2-C FULSE GENERATOR

WAFFRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be fiee from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original cwner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1
PULSE GENERATOR TEST ARRANGEMENT

Notes:

1) The bandwidth capabilitv of components and instruments used to displav the oulse qenerator outout sional (attenuators, cables, connectors, etc.) should exceed 100 MHz .
2) The use of 50 db attenuator at the scope vertical input channel will insure a peak input signal to the scope of less than one volt (necessary onlv if sampling scope used). If a high impedance real time scope is used. the pulse generator should be terminated using a shunt 50 ohm resistor.
3) The sync output channel provides a 20 nsec +0.5 volt pulse to fifty ohms.
4) For units with the dual output polarity ontion, the desired outout polarity is selected by means of the rear panel POLARITY switch.
5) To obtain a stable outout disolav the PW and PRF controls on the front panel should be set midranoe. The front panel TRIG toqgle switch should be in the INT position. The DELAY controls and the scode trigoering controls are then adjusted to obtain a stable outout. The scope may then be used to set the desired PRF by rotating the PRF controls.
6) The output pulse width is controlled by means of the front panel one turn PW contral.
7) The output pulse amplitude is controlled by means of the front panel one turn AMP control.
8) To valtage control the outout pulse width, remove the jumper wire between banana plugs A and B on the back panel and apoly 0 to +10 ta connector B (R_{xN} 》 10 K). (ontion).
9) To voltage control the outout amplitude, remove the jumoer wire between banana olugs A and B on the back panel and apoly 0 to +10 V to connector B ($\mathrm{R}_{\mathrm{xN}} \geqslant 10 k$). (ontion).
10) An external clock mav be used to control the output PRF of the AVR unit by setting the front panel TRIG toggle switch in the EXT position and applying a 20 nsec (approx.) TTL level pulse to the TRIG BNC connector input. For operation in this mode, the scope time base must also be triggered by the external clack rather than from the SYNC output.
11) The AVK-A-2-C features an output impedance of the order of several ohms (rather than 50 ohms). The following consequences of this feature should be noted:
a) When used to switch same semiconductar devices (eg. bipolar and VMOS power transistors), the AVR urit will yield much faster switching times than those provided by 50 ohm pulse generators.
b) The AVR unit will safely operate in to load impedances in the range of 50 otrms to an open circuit. However, the fall time may degrade for load impedances higher than fifty ohms.
c) The AVR unit may be effectively converted to a fifty ohm output impedance generator by placing a fifty ohm 1/2 watt carbon composition resistor in series with the output of the unit and the load. The maximum available load voltage will then decrease to 25 valts (from 50 valts).
d) The output switchirg elements may fail if the unit is inadvertently operated into a short circuit. The switching elements are easily replaced in the field follawing the procedure outiined in the REFAIR Section.
12) The maximum allowable output pulse width for each FFFF range \{1, 2 and $3_{,}$MAX and MIN) is given in the fallowing table. The output amplitude will decrease and the unit may fail if the pulse width (i.e. 20% max duty cycle) conditions are exceeded. CAUTION: The AVR-A-2-C unit provides up to 10 watts average power to a 50 ohm load.
13) AVK-A-2-PW-C units with a serial number higher than 5600 are protected by an automatic overload protective circuit which controls the front panel overload light. If the unit is overloaded by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument DFF and turn the indicator light ON. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt to turn ON (i.e. light DFF) for about 1 second. If the overload condition persists, the instrument will turn GFF again (i.e. light oN) for another 5 seconds. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:
14) Fieducing FifF (i.e. switch to a lower range)
15) Feducing pulse width (i.e. switch to a lower range)
16) Femoving output load short fircuit (if any)

MAX FW (usec)

Fiange 1				
FFFF MAX	$1 \simeq 2$	$\mathrm{KHz})$	200	กsec
FFiF MIN	($\simeq 200$	$\mathrm{Hz})$	200	nsec
Range 2				
FRF MAX	$1 \simeq 22$	$\mathrm{KHz})$	200	กisec
FRF MIN	$1 \simeq 2$	kHz	200	nsec
Range 3				
FFiF MAX	$1 \simeq 220$	KHz)	200	nsec
FFF MIN	($\simeq 22$	$\mathrm{KHz}^{\text {) }}$	200	nsec
Fiange 4				
PFFF MAX	(21.日	$\mathrm{MHz})$	180	nser
FRF MIN	$\bigcirc \approx 180$	KHz)	200	nsec
Range 5				
PFF MAX	$1 \simeq 10$	$\mathrm{MHz})$	20	nsec
FRF MIN	$f \simeq 1.2$	MHz	180	กsec

1.4) The unit can be converted from 110 to 220 V EO-60 Hz operation by adjusting the valtage selector card in the rear panel fused voltage selector cable connector assembly.

Fig. 2
FRONT PANEL CONTROLS
 controls determine output PRF as follows. The operating PRF should be set using a scope.

	PRF MIN	PRF MAX
Range 1	200 Hz	2 KHz
Range 2	2 kHz	22 KHz
Range 3	22 kHz	220 KHz
Range 4	180 KHz	1.8 MHz
Range 5	1.2 MHz	10 MHz

CAUTION: The output duty cvcle must not exceed 0.5%. The AVR-A-2-C unit provides up to 10 volts to a 50 ohm load.
(4) DELAY Control. Controls the relative delay between the reference output pulse provided at the SYNC output (5) and the main outout (6). This delay is variable over the range of 0 to about 1.0 usec.
(5) SYNC Dutput. This output precedes the main output (6) and is used to trigger the scope time base. The output is a +0.5 20 nsec (approx.) pulse capable of driving a fifty ohm load.
(6) OUT Connector. BNC connector provides output to a fifty ohm load.
(7) PW Control. A one turn control which varies the output pulse width.
(8) AMP Contral. A one turn contral which varies the output pulse amplitude.
(9) EXT-INT Control. With this toggle switch in the INT position, the PRF of the AVR unit is controlled via an internal clock which in turn is controlled by the PRF controls. With the toggle switch in the EXT position, the AVR unit requires a 20 nsec TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source.
(10) TFIG Input. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.
(11) DVERLOAD. AVF-A-2-FH-C units with a serial number higher than 5600 are protected by an automatic averload protective circuit which controls the front parel overload light. If the unit is overloaded by operating at an exceedingly high duty cycle or by operating into a short circuit), the protective circuit will turn the output of the instrument DFF and turn the indicator light ON. The light will stay ON (i.e. output OFF) for about 5 seconds after which the instrument will attempt ta turn ON (i.e. light OFF) for about 1 second. If the overload condition persists, the instrument will turn OFF again (i.e. light ON) for another 5 secancis. If the overload condition has been removed, the instrument will turn on and resume normal operation. Overload conditions may be removed by:

1) Reducing FFF (i.e. switch to a lower range)
2) Reducing pulse width (i.e. switch to a lower range)
3) Fiemoving output load short circuit (if any)

Fig. 3 BACK PANEL CONTROLS

(1) FUSED COWWECTOF, VOLTAGE SELECTOF. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit alsa contains the main power fuse (0.5 A SB).
(2) To voltage control the output pulse width, remave the jumper wire between banana plugs A and E and apply 0 ta +104 to connector B (Fixn $\geqslant 10 k$). (option).
(3) To voltage control the output amplitudes remove the jumper wire between banana plugs A and B and apply o to +10 V to connector E (Fixw $\geqslant 10 k$). (option).
(4) OUTPUT FOLARITY CONTFDL (option). With switch in (F) positions output is positive. (With switch in (N) position: output pulse is negative.
(5) MONITOF Dutput. The back monitor output pravides an attenuated replica (20 db down) of the output less DC offset. The monitor output is designed to operate iroto a 50 ahm load. (option).
(6) DFFSET Input. To DC offset the output pulses conriect a DC power supply set to the desifed offset value to these terminals. The maximum allowable DC offset voltage is ± 50 volts.
(7) 2. OA SB. This fuse Iimits the DC prime power suppliedi to the output stage and will blow in the case of severe overloading.

Fig. 4

The AVR-A-2-C consists of the following basic modules:

1) AVR-A-2-FG pulse generator module
2) AVF-A-2-CL clock module
3) +24 V power supply board

The modules are interconnected as shown in Fig. 4.
The clock module controls the output PFF and the relative delay between the main output and the SYNC outputs. The PG pulse generator modules generate the output pulse. In the event of an instrument malfunction, it is most likely that the rear panel 2.0 A 58 fuse or some of the output switching elements (SL8T) may have failed due to an output short circuit condition or to a high duty cycle condition. The switching elements may be accessed by removing the cover plate on the bottom side of the chassis. NOTE: First turn off the prime power. CAUTION: Eriefly ground the SL8T tabs to discharge the 60 volts power supply potential. The elements may be removed from their sockets by means of a needle nosed pliers after removing the four counter sunk $2-56$ Fhillips screws which attach the small aluminum heat sinks to the bady of the chassis. The SLBT is a selected UMOS power transistor in a to 220 package and may be checked on a curve tracer. If defective, replacement units should be ordered directly from Avtech. When replacing the SL日T switching elements, take care to insure that the short lead (of the three leads) is adjacent to the black dot on the chassis. The SLBT elements are electrically isolated from the small aluminum heat sinks but are bonded to the heat sinks using WAKEFIELD TYFE 155 HEAT SINK ADHESIVE. If the switching elements are not defective, then the four Phillips screws on the back panel should be removed. The tap cover may then be slid off and the operation of the clock and power supply madules checked. The clock module is functioning properly if:
a) 20 nsec outputs are observed at pins 2 and 3 .
b) The FRF of the outputs can be varied over the range of 0.1 kHz to 10 MHz using the PRF controls.
c) The relative delay between the pin 2 and 3 outputs can be varied by at least 500 nsec by the DELAY control.

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed. The power supply board generates $+24 V$ DC to power the other modules. If the valtage is less than +24 V , turn off the prime power and unsolder the lead from the 7924 regulator chip on the power supply board. Solder a 100 ohm 5 watt resistor to the 7924 output to ground and turn on the prime power. A voltage of +24 volts should be read. If the voltage is less then the power supply board is defective and should be repaired or replaced.

Schrobf 11.12 .90 edition B
$-P N$
-EW
-EA

- M
-0S
-PW

